Name___ Date____

Pd

	DIRECT VARIATION: Linear function with a y-intercept of 0. In a direct variation, both of the quantities are either increasing or both are decreasing.				
≻	There are two methods for solving a direct variation problem:				
	1) Equation of Variation: $y = kx$ where k is called the constant of variation 2) Proportion: $\frac{y_1}{x_1} = \frac{y_2}{x_2}$				
#1: The distance that a body near Earth's surface will fall from rest varies directly as the square of the number of seconds it has been falling. If a boulder falls from a cliff a distance of 122.5 <i>m</i> in 5 seconds, approximately how far will it fall in 8 seconds?					
	$\begin{array}{c} \underline{Method 1} \\ y = 4x \\ d = 4x \\ 122.5 \\ z \\ $				
A	JOINT VARIATION: more than two quantities in a direct variation relationship				
	Equation of Variation: $y = kxz$ where k is called the constant of variation				
#2:	If y varies jointly as x and z, and $y = \frac{1}{2}$ when $x = 27$ and $z = \frac{-2}{3}$, find y when $x = 9$ and $z = 18$. $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left(\begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}) \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array} \left) \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array} \left) \end{array} \left) \end{array} \left(\begin{array}{c} \end{array} \left) \end{array} \left) \end{array} \left) \left(\begin{array}{c} \end{array} \left) \end{array} \left) \end{array} \left) \left) \left(\begin{array}{c} \end{array} \left) \end{array} \left) \left)				
_	(21)(-2/3) $(2)(-2/3)$				
≻	INVERSE VARIATION: Rational function with vertical and horizontal asymptotes. In an inverse variation, one of the quantities is increasing while the second quantity is decreasing.				
	Equation of Variation: $y = \frac{k}{x}$ where k is called the constant of variation				
#3:	The time of a trip varies inversely as the speed of the car. If a car being driven at 55 <i>mph</i> takes 2 <i>hours</i> to get from Wake Forest to Greensboro, how fast is the car traveling if the trip takes 2.5 <i>hours</i> ?				
	$y = \frac{k}{X}$ $h = \frac{k}{m}$ $\frac{2}{755}$ $\frac{10}{55}$ $\frac{10}{10} = \frac{10}{10}$ $m = 44mpt$				
	2.5m=110				

COMPOUND VARIATION:
 Both Inverse and Direct Variation in the same problem

 Equation of Variation:

$$y = \frac{kx}{z}$$
 where k is called the constant of variation

 #4:
 The volume of gas varies directly with Kelvin temperature and inversely with pressure. If a certain gas has a volume of 342 cubic meters at a temperature of 300 Kelvin degrees under a pressure of 200 KPa (kilopascals), what will be the volume of the same gas at a temperature of 320 Kelvin degrees under a pressure of 400 kPA?

 $\mathcal{Y} = \underbrace{\mathcal{F}X}_{\mathcal{Z}}$
 $\mathcal{Y} = \underbrace{\mathcal{F}}_{\mathcal{P}}$
 $\underbrace{\mathcal{G}}_{\mathcal{A}} \underbrace{\mathcal{G}}_{\mathcal{A}} \underbrace{\mathcal{G}} \underbrace{\mathcal{G}}_{\mathcal{A}} \underbrace{\mathcal{G}}_{\mathcal{A}} \underbrace{\mathcal{G}} \underbrace{\mathcal{G}} \underbrace{\mathcal{G}} \underbrace{\mathcal{G}}_{\mathcal{A}} \underbrace{\mathcal{G}}$

State whether each equation represents a direct, inverse, joint or compound variation. Then state the constant of variation.

1. $y = \frac{9}{x}$	2. z = 5xy	3. $y = \frac{8x}{z}$	4. $y = 2x$	5. $xy = 12$
$6. z = \frac{xy}{15}$	7. $y = \frac{3}{4}xz$	8. $y = \frac{1}{3}x$	9. $z = \frac{x}{12y}$	10. $y = \frac{x}{5}$

- > Write a function for each variation relationship:
 - 11. *W* varies directly as the square of *d*. $W = K d^2$ 12. *V* varies inversely as *J*. $V = \frac{K}{J}$ 13. *V* varies inversely as *p* and directly as *T*. $V = \frac{K}{P}$ 14. *F* varies jointly as *A* and the square of *v*. $F = K A V^2$
 - 15. L varies directly as the fourth power of d and inversely as the square root of h.

$$L = \frac{kd}{\sqrt{n}}$$

Math 2 Unit 4 - Radical & Rational Functions Lesson 5 → Types of Variations HOMEWORK Name_____Pd____Pd____

Write an equation for each statement and then solve:

Write an equation for each statement and then solve:						
1. If y varies directly as x and $y = 15$ when $x = 2$ find y	2. If y varies directly as x and $x = 26$ when $x = 4$ find	3. If <i>y</i> varies directly as x^2				
y = 15 when $x = 3$, find $ywhen x = 12.$	and $x = 36$ when $y = 4$, find x when $y = 24$.	and $y = 12$ when $x = 4$, find y when $x = 6$.				
$1A - V \times k = 5$		$(1 - x)^2$				
		9- 4 X				
15= 25 N=5(12)		-				
3 J U=60						
4. If <i>y</i> varies inversely as <i>x</i> and	5. If y varies inversely as x and	6. If y varies inversely as x^3				
y = 2 when $x = 8$, find x	x = 7 when $y = 21$, find y	and $y = 6$ when $x = \frac{-3}{4}$, find				
when $y = 14$.	when $x = 42$.	y when $x = 3$.				
	$\int = \frac{1}{X} \exists I = \frac{1}{Y} + \frac{1}{Y}$					
	$y = \frac{147}{42} 3.5/\frac{3}{2}$					
7. Supposey varies jointly with	8. Suppose <i>z varies jointly with</i>	9. Suppose <i>m varies jointly</i> as				
x and z. If $y = 20$ when	x and y. If $x = 3$ and	n and p. If $n = 4$ and				
x = 2 and $z = 5$, find y when $x = 14$ and $z = 8$.	y = 2 when $z = 12$, find $zwhen x = 4 and y = 5$	p = 5 when $m = 60$, find m				
x = 14 and 2 = 0.	when $x = 4$ and $y = 5$.	when $n = 12$ and $p = 2$.				
10. Suppose that <i>y</i> varies	11. Suppose <i>y varies directly</i>	12. Suppose <i>x varies directly</i>				
directly as x and inversely	as \sqrt{x} and inversely as z. If	as y^3 and inversely as \sqrt{z} . If				
as z. If $y = 5$ when $x = 3$ and $z = 4$, find y when	y = 10 when $x = 9$ and $z = 12$ find with an $x = 16$	x = 7 when $y = 2$ and $z = 4$ find x when $x = 2$ and				
x = 6 and $z = 8$.	z = 12, find y when $x = 16and z = 10.$	z = 4, find x when $y = 3$ and $z = 9$.				
		2 - 7.				