\qquad
Unit 4 -Radical \& Rational Functions
Date \qquad Pd

Lesson $3 \rightarrow$ Graphs of Rational Functions

$>$ A rational function is a function that can be written as the ratio of two polynomials where the denominator does not equal zero.

$>f(x)=\frac{p(x)}{q(x)}$ where $q(x) \neq 0$

Steps to graph a rational function:

$$
y=\frac{n}{x-h}+k
$$

1) Determine the location of the asymptotes based on the transformations:

A) Vertical asymptotes are placed based on the horizontal translation: $\boldsymbol{x}=\boldsymbol{h}$
B) Horizontal asymptotes are placed based on the vertical translation: $\boldsymbol{y}=\boldsymbol{k}$
2) Vertical Stretch or Compression: \boldsymbol{n} tells us how far the branches have been stretched from the asymptotes. We can use it to help us find out corner points to start our branches.

Distance from asymptotes $=\sqrt{n}$
3) Look at the table on the calculator for other points and then sketch the two branches.

* Graph each of the following examples:

1. $y=\frac{1}{x}$

Equation of $V A: X=0$ Equation of HA: $y=0$ Describe translations: $\leadsto N / A$ Domain: $x \neq 0$
Range:
$y \neq 0$

Equation of $V A: X=2$ Equation of HA: $y=1$ Describe translations: Domain: $x \neq 2$
Range:

$$
y \neq 1
$$

3. $y=\frac{\uparrow-a x}{x+1} 5 b y^{4}$

Equation of VA: $X=-1$
Equation of HA: $y=0$
Describe translations: $\mathbb{R x}_{x}$-axis, L
Domain: $x \neq-1 \quad 54$
Range:
$y \neq 0$
4. $y=\frac{1}{x}-44$

Equation of VA: $X=0$
Equation of HA: $y=-4$
Describe translations: Down 4
Domain: $x \neq 0$
Range: $y \neq-4$
5. $x y=9 \quad y=\frac{9}{x}$
6. $y=\frac{4}{x-2}-3$

Equation of VA: $X=0$
Equation of VA: $X=2$
Equation of HA: $y=-3$
Describe translations: Shy 4
Domain: $x \neq 2$ R2 03
Range:
7. Describe each graph as compared to the parent graph $y=\frac{1}{x}$.

$$
y=\frac{-2}{x-7}+5
$$

The graph of this \qquad function has been translated \qquad seven units and translated \qquad units \qquad . It has been vertically stretched by a factor of \qquad and
\qquad across the x -axis. The graph is increasing from \qquad to \qquad . The function has a domain of \qquad and a range of \qquad .
8. Write the equation of a rational function $y=\frac{1}{x}$ with following transformations:

