Lesson 3 Completing the Square Created with Doceri

Ways to Graph a Parabola: $y = a(x - h)^2 + k$ and y = a(x - int.)(x - int.)

- What if a quadratic equation is in standard form? $y = ax^2 + bx + c$
- Recall from Math I: The vertex can be found using $\left(\frac{-b}{2a},y\right)$ and the axis of symmetry is $x=\frac{-b}{2a}$.

✓ Complete the information for each parabola. Graph on the calculator to verify your vertex.

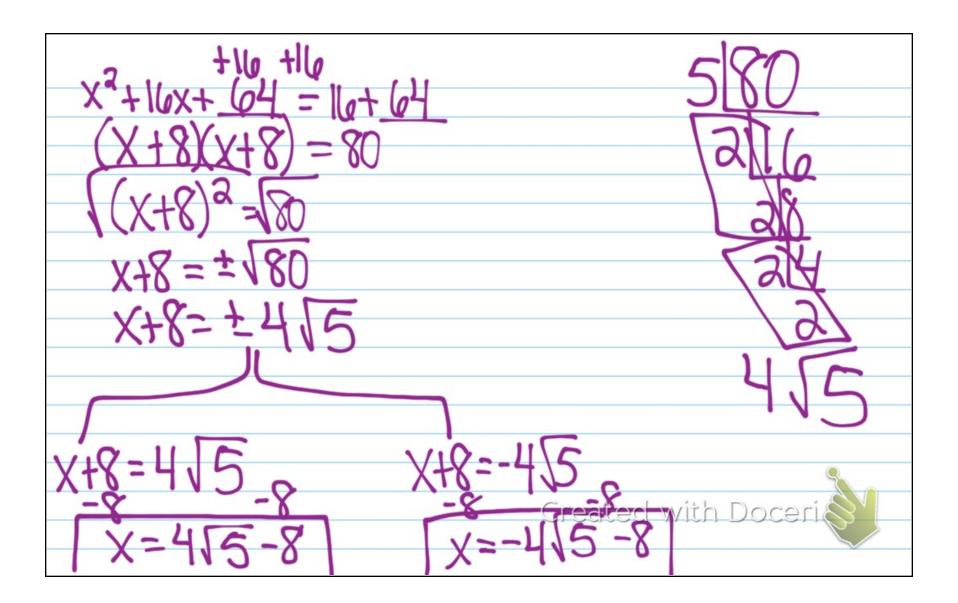
$$y = -2x^2 - 12x - 16$$

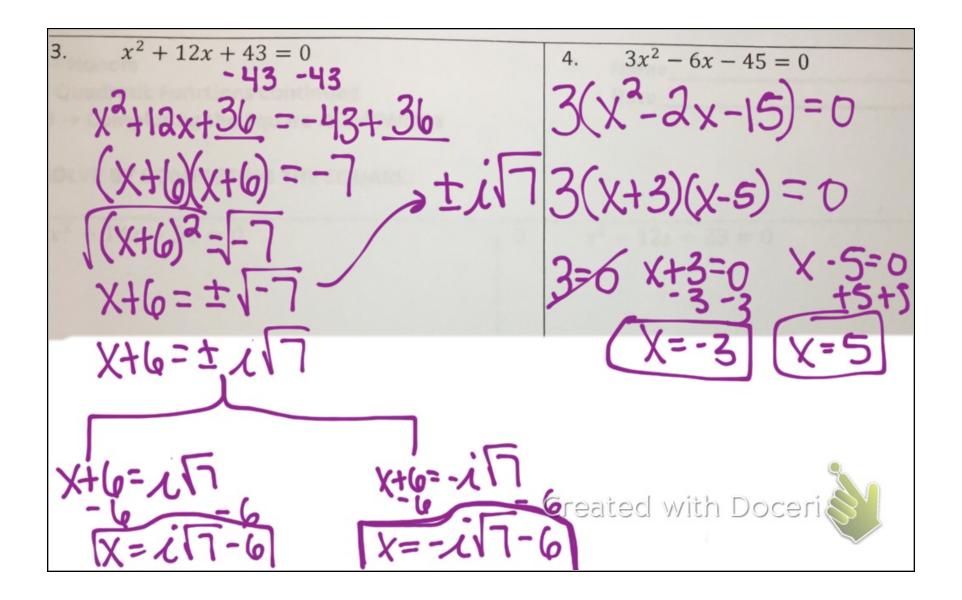
- 1. Vertex: (-3, a)
- 2. Maximum or Minimum
- 3. Axis of Symmetry: X=-3
- 4. y intercept: (0, (c)
- 5. x intercepts:(- 山 へ) (-2.6)
- 6. Domain: 1 (-00 0
- 7. Range: (- >> 2

$$y = 3x^2 + 10x - 2$$

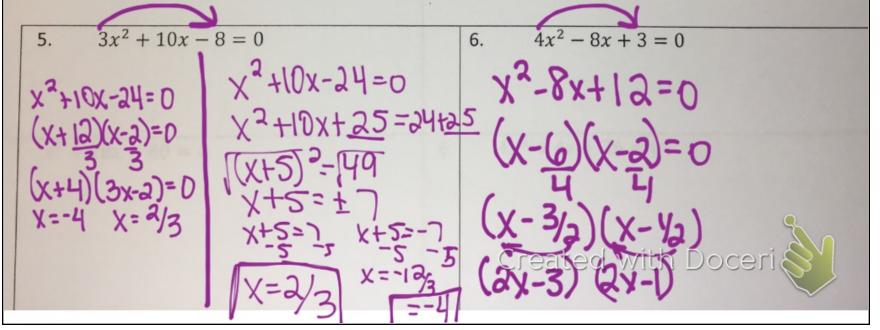
- 1. Vertex: (-1.6, -10.3)
- 2. Maximum of Minimum
- 3. Axis of Symmetry X=-1.1
- 4. y intercept: (1) 2)
- 5. x intercepts:
 - (-3.52,0) (.19,0)
- 6. Domain:
- 7. Range: [-10.3.

$$y = 2x^2 + 15x + 29$$


- 1. Vertex:
- 2. Maximum or Minimum
- 3. Axis of Symmetry:
- 4. y intercept:
- 5. x intercepts:
- 6. Domain:

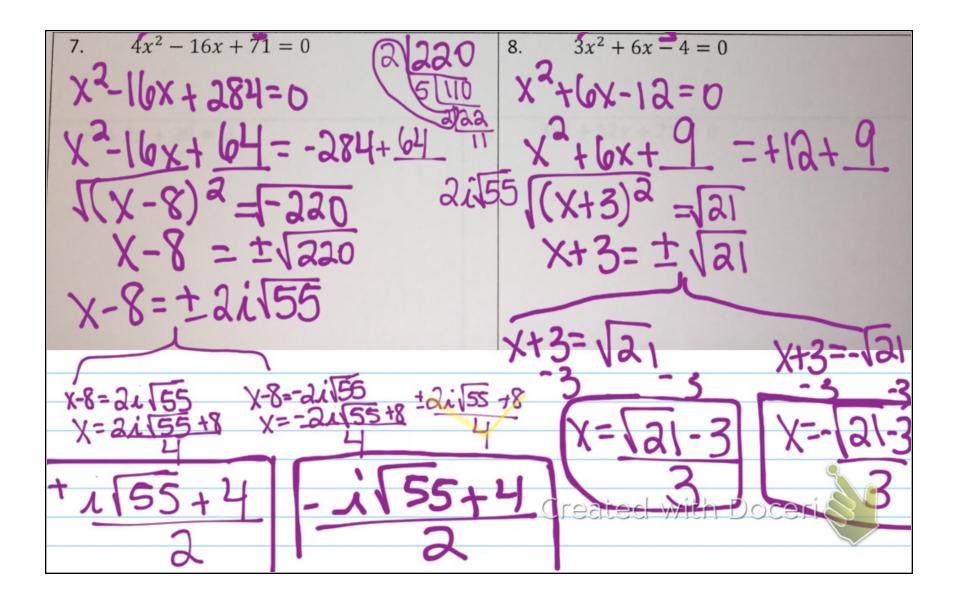

With Doceri

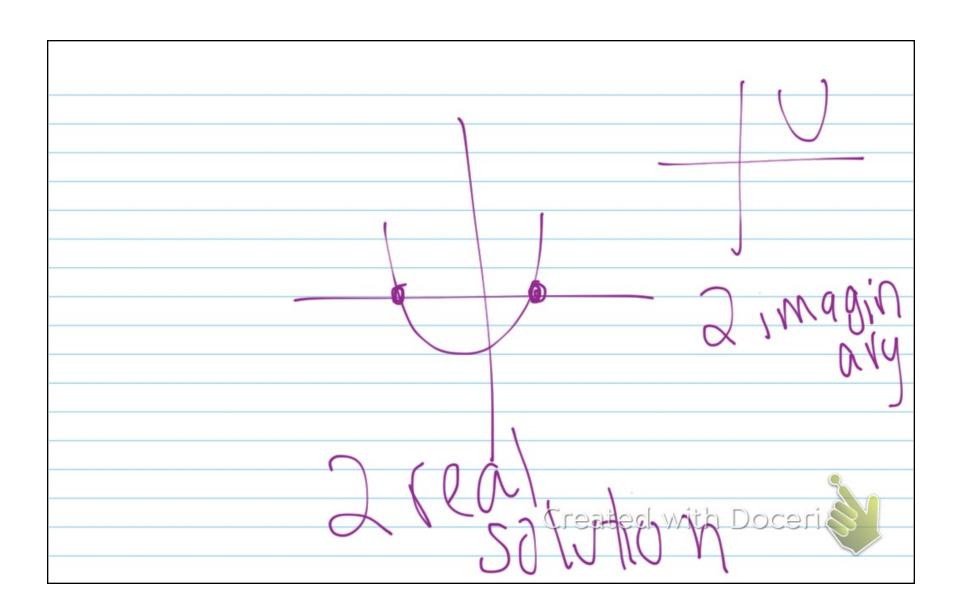
- COMPLETING THE SQUARE will allow us to find ALL solutions (rational, irrational & imaginary).
 - 1) **REWRITE** as $x^2 + bx + c = 0$ as $x^2 + bx = -c$
 - 2) $x^2 + bx + \underline{\hspace{1cm}} = -c + \underline{\hspace{1cm}}$
 - 3) **COMPLETE THE SQUARE** by taking half of *b*; square it and ADD IT TO BOTH SIDES of the equation in the blanks.
 - 4) FACTOR the perfect square trinomial.
 - 5) Take the SQUARE ROOT of both sides. Don't forget to include a \pm to create 2 solutions.
 - 6) SOLVE both equations. SIMPLIFY all irrational and complex solutions.


1.
$$x^{2}-6x+8=0$$

 $(x-4)(x-2)=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$
 $x-2=0$

2.
$$x^{2} + 16x - 16 = 0$$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+ 16 + 16$
 $+$




- 1) **BEGIN** with $ax^2 + bx + c = 0$ and **MULTIPLY** "a" to "c"
- 2) REWRITE $x^2 + bx = -c \cdot a$
- 3) $x^2 + bx + \underline{\hspace{1cm}} = -c \cdot a + \underline{\hspace{1cm}}$
- 4) **COMPLETE THE SQUARE** by taking half of *b*; square it and ADD IT TO BOTH SIDES of the equation in the blanks.
- 5) FACTOR the perfect square trinomial.
- 6) Take the SQUARE ROOT of both sides. Don't forget to include a \pm to create 2 solutions.
- 7) SOLVE both equations. SIMPLIFY all irrational and complex solutions.
- 8) **DIVIDE** by "a" and **REDUCE** all final solutions.

$$\begin{array}{c} \chi^2 - 8x + |\lambda = 0 \\ (\chi - \frac{\omega}{4})(\chi - \frac{\omega}{2}) = 0 \\ (\frac{\chi}{2} - \frac{3}{2})(\chi - \frac{1}{2}) \\ (\frac{3}{2}\chi - 3)(\frac{1}{2}\chi - \frac{1}{2}) \\ \frac{3}{2}\chi = 0 \\ \frac{3}{2}\chi$$

Page 10-1	1 Even	HW
		Created with Doceri
		Creates: With Docern

Created with Doceri