Lesson 8 Interpreting Functions Domain + hange Transformations Created with Doceri

1.	Use a dotted line to sketch Kim's graph of distance from school over time (once she leaves for school).
2.	How many minutes after 7AM does Jim leave for school?
3.	How many minutes after 7AM does Jim arrive at school?
4.	How many minutes after 7AM does Kim leave for school?
5.	How many minutes after 7AM does Kim arrive at school?
6.	What is Jim's farthest distance from school? 100 yc
7.	What is Jim's closest distance to school?
8.	What is Kim's farthest distance from school?
9.	What is Kim's closest distance to school?
	Czastad with Dagazi
	Created with Doceri

> Use your answers to the above questions to f	fill in the following:
10. Jim's domain:	11. Kim's domain: $\leq x \leq $
(where x represents time after 7AM)	(where x represents time after ZAM)
12. Jim's range: $\int_{-\infty}^{\infty} \leq y \leq \int_{-\infty}^{\infty}$	13. Kim's range: $0 \le y \le 90$
(where y represents distance from school)	(where y represents distance from school)
whether the endpoints are excluded or include between 3 and 8, including 3 and excluding 8. greater than or equal to 4.	tation. Parentheses and/or brackets are used to show ed. For example, $[3, 8)$ is the interval of real number. Another example, $[4, \infty)$ is the interval of real numbers.
Domain: All values fo	(Which x is defined
Range: All values for	Whichecywith Dorchic

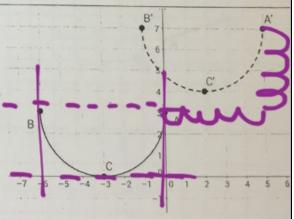
Domain and Range in Translations

Quick review: The **domain** is the set of all possible x - values on the graph. The **range** is the set of all possible y - values on the graph.

1. Describe the translation(s) from the pre-image to the image.

a. Given the following graph, state the domain and range of

the pre-image in inequality notation.


Range:

O

Range:

b. State the domain and range of the image in interva

notation: [-1,5] Range: [4,7]

(x,y) > (x+5, y+4)

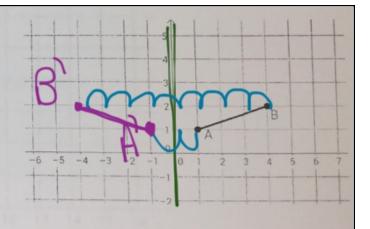
Created with Doceri

2. Draw and label the image of A	AB translated left 2 and down 3.
a. State the domain and range Domain: Domain: b. State the domain and range Domain: Domain:	Range: $4 \times 4 = 2$. Range: $4 \times 4 = 2$. $4 \times 4 = 2$. $4 \times 4 = 2$.
	Created with Doceri

3. Draw and label the image of \overline{AB} reflected over the x-axis.	++
a. State the domain and range of the pre-image: Domain: Range: 14 Range: 14 A Range: 14 A Range: 14 A Range: 14 A Range: 15 A Range: 16 A Range: 17 A Range: 17 A Range: 17 A Range: 18 A	-6 -5 -4 -3 -2 -1 0 2 3 4 5 6 7
$(\sqrt{\sqrt{2}})$	
	reated with Doceri
	Created with Doceri

4. Draw and label the image of $\overline{\mathrm{AB}}$ reflected over the y-axis.

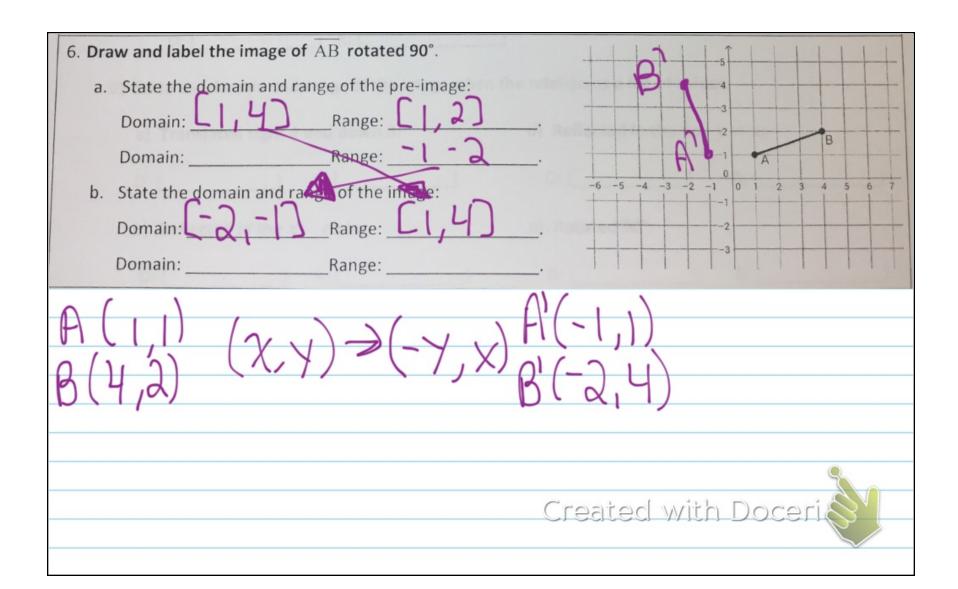
a. State the domain and range of the pre-image:

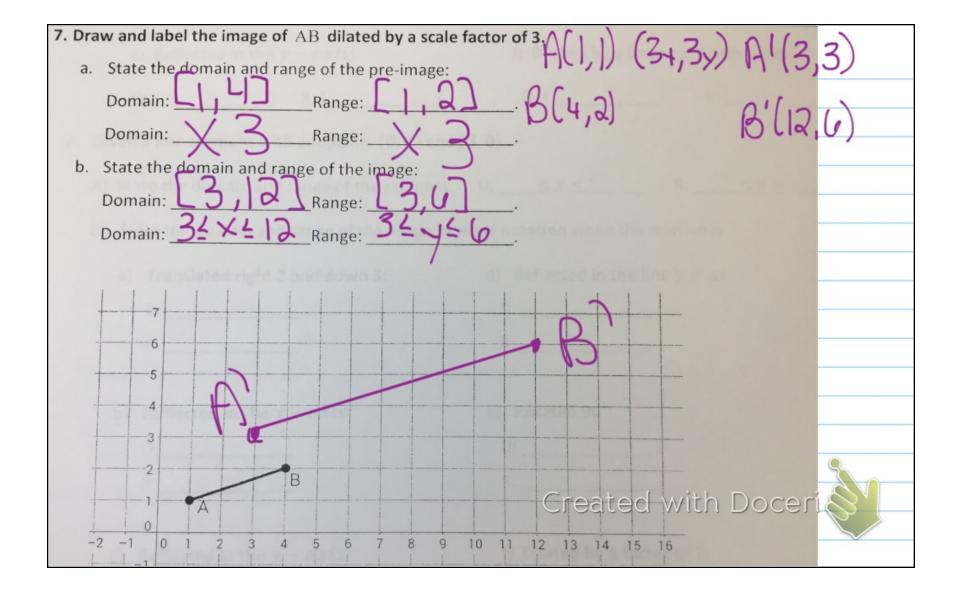

Domain: ______Range: ______

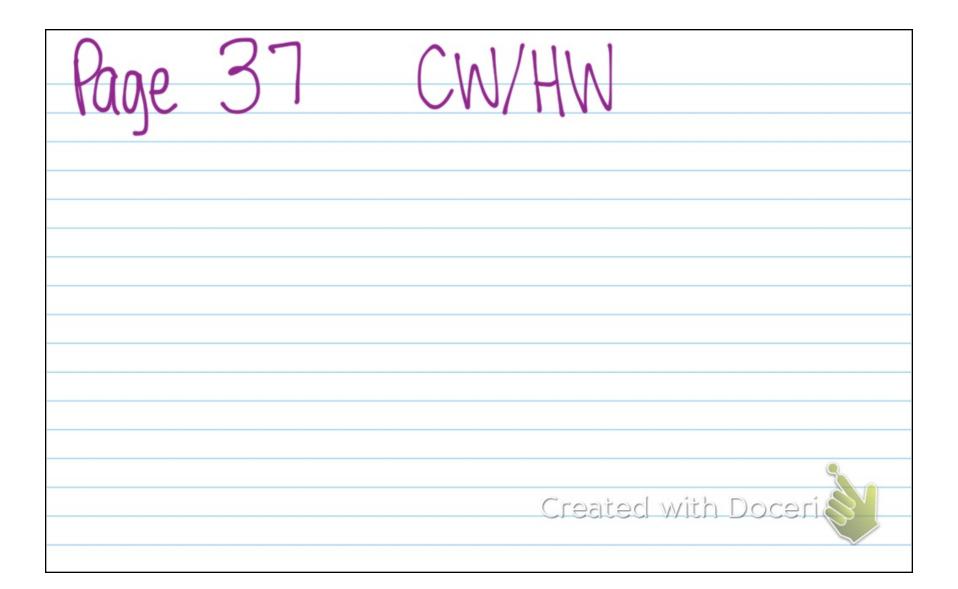
Domain: ______Range: _____

b. State the domain and range of the image:

Domain: L-4, Range: L1, 2

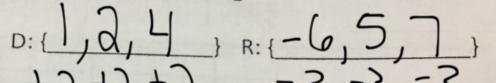

Domain: 44x5 - Range: 14y42




 $(\chi, y) \rightarrow (-x, y)$

Created with Doceri

5. Draw and label the image of \overline{AB} reflected over the line $y = x$.
a. State the domain and range of the pre-image:
Domain: LI,4 Range: LI, 2 .
Domain: Range:
b. State the domain and range of the image: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Domain: Range: L, 4.
Domain: $4 \times 4 \times 2$ Range: $4 \times 4 \times 4$.
$A(I)) (X Y) \rightarrow (Y Y) A'(I)$
Q(11) (11) (7, X) Q'(2) L)
$U(\tau, \sigma)$
Created with Doceri



Lesson 8 – Functions CLASSWORK/HOMEWORK

Classwork: Given the patterns seen above, can you predict the lomain/range of an image given a pre-image domain/range? Let's try:

- 1. Given a relation composed of points A(2,5), B(1,-6), and C(4,7)
 - A) State the domain and range of the relation as a list of value

- B) State the donnain and range of the image when the relatio
 - a) Translated right 2 and down 3:

d) Ref

R: { -9,2,4}

Created with Docer

b) Reflected in the x - axis:

e) Ro