Created with Doceri

| а | ٠. | - 4 |
|---|----|-----|

As Alice goes through her adventure, she encounters the following potions and cakes:

Red potion – shrink by  $\frac{1}{9}$ 

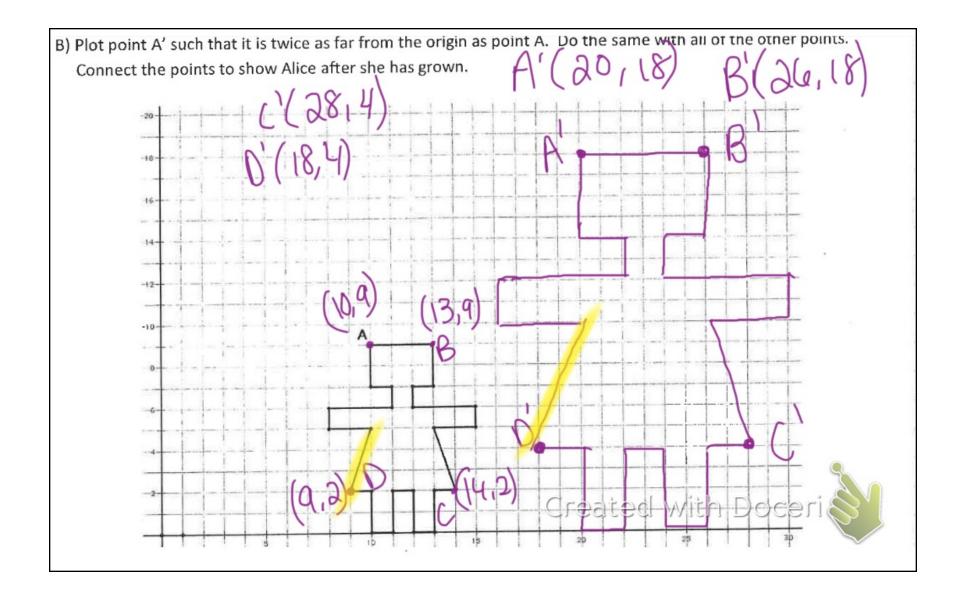
Chocolate cake - grow by 12 times

Blue potion – shrink by  $\frac{1}{36}$ 

Red velvet cake - grow by 18 times

Green potion – shrink by  $\frac{1}{15}$ 

Carrot cake - grow by 9 times


Yellow potion – shrink by  $\frac{1}{4}$ 

Lemon cake - grow by 10 times

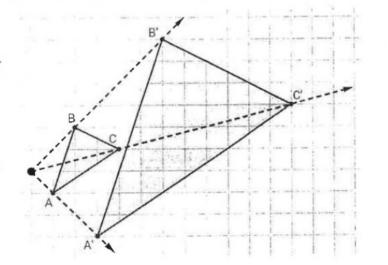
Find Alice's height after she drinks each potion or eats each bite of cake. <u>If everything goes correctly, Al</u> return to her normal height by the end.

| Starting Height | Alice Eats or Drinks | Scale factor from<br>above | New Height |
|-----------------|----------------------|----------------------------|------------|
| 54 inches       | Red potion           | 1/9                        | 6 inches   |
| 6 inches        | Chocolate cake       | 6×12                       | 72 in      |
| 72              | Yellow potion        | 72×44                      | 1810       |
| 18              | Carrot cake          | 18×9                       | 162        |
| 162             | Blue potion          | 162x 1/36                  | 4.5 019    |
| 1.5             | Lemon cake           | 4.5×10                     | 45         |
| 45              | Green potion         | 45 x 115                   | 3          |
| 3               | Red velvet cake      | $\times 18$                | 54 inches  |

eated with Doceri



| C) Ans | swer the following questions:                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | How many times larger is the new Alice?                                                                                                                                  |
| 2.     | How much farther away from the origin is the new Alice?                                                                                                                  |
| 3.     | What are the coordinates for point A? $(10,9)$ Point A'? $(20,18)$                                                                                                       |
| 4.     | What arithmetic operation do you think happened to the coordinates of A?                                                                                                 |
|        | Write your conclusion as an Algebraic Rule $(x,y) \rightarrow (y,y)$                                                                                                     |
| 6.     | What arithmetic operation on the coordinates do you think would shrink Alice in half?                                                                                    |
| 7.     | Write your conclusion as an algebraic rule. $(72 \times 1)$                                                                                                              |
| 8      | If Alice shrinks in half, how far away from the origin will her image be from her preimage?                                                                              |
|        |                                                                                                                                                                          |
| 9.     | Sketch Alice after she shrinks.  (5,4,5) ((5,4,5) ('(7,1)) (4,5))  Choose a diagonal segment on Alice's dress. Calculate the slope of this segment on all three dresses. |
|        | A"(5,4,5) B'(6,5,4,5) ((1,1) V(4,7,1)                                                                                                                                    |
| 10     | ). Choose a diagonal segment on Alice's dress. Calculate the slope of this segment on all three dresses.                                                                 |
|        | What do you notice about all three of the slopes?                                                                                                                        |
|        | What is the name given to this geometric relationship?                                                                                                                   |
|        | Whatel with Doceri                                                                                                                                                       |
|        |                                                                                                                                                                          |
|        |                                                                                                                                                                          |

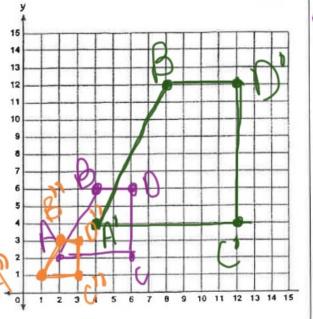

| <ul> <li>A DILATION stretches or shrinks the original figure.</li> <li>The description of a dilation should include the 5000 factor, the 000 the dilation, and whether the dilation is an enlagement or a reduction.</li> <li>The amount by which the image grows or shrinks is called the "5000 Factor."</li> </ul> |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| • The CRAK of dilation is a fixed point in the plane about which all points are expanded or                                                                                                                                                                                                                          |  |  |  |
| contracted.                                                                                                                                                                                                                                                                                                          |  |  |  |
| • A dilation is an enlargement of the pre-image if the Scale factor is                                                                                                                                                                                                                                               |  |  |  |
| • A dilation is a reduction of the pre-image if the Scale factor is $\frac{OZXZ}{}$                                                                                                                                                                                                                                  |  |  |  |
| If the scale factor is 1, then the pre-image and image are                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Defull O M Created with Doceri                                                                                                                                                                                                                                                                                       |  |  |  |

❖ Algebraic Rule:  $(x, y) \rightarrow (ax, ay)$ 

If a > 1 then the dilation is M en/Maemunt

If 0 < a < 1 then the dilation is Q MUCHOC

The distance between the center of a dilation and any point on the pre-image is equal to the SCALL multiplied by the distance between the dilation center and the corresponding point on the image.




Created with Doceri

A dilation is

SOMETIMES / ALWAYS / NEVER an 'Isometry'.

1. Graph and connect these points: (2,2) (4,6) (6,2) (6,6).



2. Graph the image on the same coordinate plane by applying a scale factor of 2. . O. O. O. O. O. O. O.

Write the rule:

3. Graph the image on the same coordinate plane by applying

 $\binom{1}{2}$  a scale factor of  $\frac{1}{2}$ .

Write the rule:

4. Choose a diagonal segment on the trapezoid. Calculate the slope of this segment on all three figures.

What do you notice about all three of the slopes? \_

What is the name given to this geometric relationship?

22

Treated with Docer

| Page 25 |                     |
|---------|---------------------|
| 9       |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         |                     |
|         | <b>%</b>            |
|         | Created with Doceri |
|         |                     |