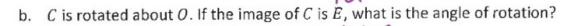
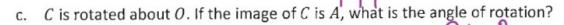
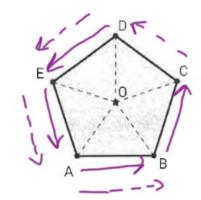
Unit 1 Lesson 4 4th.pdf Page 2 of 12


Math 2 Unit 1 – Geometric Transformations	Name Date			
Lesson 3 – Rotations with Coordinates				
Rotations				
Definition:				
A <u>rotation</u> is a type of transformation which is a	_ in a given direction for a given r	number of		
around a fixed To rotate an object, you must specify the				
of rotation, the around which	n the rotation is to occur, and the	direction.		
> Rotations can be completed in two directions: counter-clockwise & clockwise				
C	reated with Docer			


/lath 2	Name	
Init 1 – Geometric Transformations	Date	Pd
esson 4 – Rotations with Polygons		
art 1 – Regular Polygons and Rotational Symmetry regular polygon is a polygon that is equiangular (all angles ame length). In the case of regular polygons the center is the 1. Given Regular Triangle EFG with center 0. a. F is rotated about 0. If the image of F is G, where the content of the image of F is G, where the content of F i	he point that is equidistant from what is the angle of rotation?	
General Rule: The regular triangle has rotation symmetry with respect to the center of the polygon and angles of rotation that measure 180° , 240° and 360° .		
Side note: A regular triangle is also called an equila	triangle or an <u>eq</u> Created with	3

Cida	note: A regular triangle is also called an triangle or an	trienale			
Side	e note: A regular triangle is also called an triangle or an				
2.	Given Regular Quadrilateral EFGH with center O.	G			
	a. F is rotated about O . If the image of F is G , what is the angle of rotation?	\wedge			
	I Figure 1 to 1 t	\propto			
	b. F is rotated about O . If the image of F is H , what is the angle of rotation?	0			
	c. FG is rotated 270° about 0. What is the image of FG?				
	c. (FG)s/rotated 270° about 0. What is the image of FG?	> F			
Γ					
	General Rule: The regular quadrilateral has rotation symmetry with respect to the center of the polygon				
	and angles of rotation that measure 90° , 180° , 270° and 360°				
_	SOUTH				
	Side note: A regular quadrilateral is often called a				
	0 0 10 10 10 10				
	KUT (VITE) OCHOLINI				
	Created with Doc	eri 8			


3. Given Regular Pentagon ABCDE with center O.

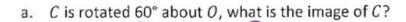
a. C is rotated about O. If the image of C is D, what is the angle of rotation?

d. \overline{DC} is rotated 288° about 0, what is the image of \overline{DC} ?

4 turns U

General Rule: The regular pentagon has rotation symmetry with respect to the center of the polygon and angles of

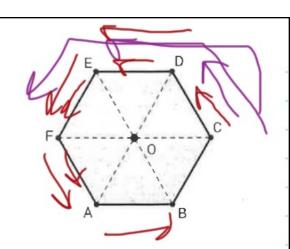
rotation that measure


2°, 144°

288°

and 3

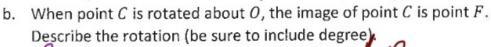
340 = 720


4. Given Regular Hexagon ABCDEF with center O.

b. C is rotated 120° about O, what is the image of C?

c. C is rotated 180° about O, what is the image of C?

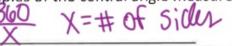
d. DC is rotated 240° about 0, what is the image of DC?

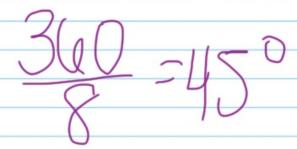


The regular hexagon has rotation symmetry with respect to the center of the polygon General Rule: and angles of rotation that measure $(0^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ})$ and (360°) .

5. Given Regular Octagon ABCDEFGH with center O.

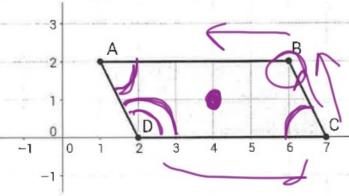
a. When point C is rotated about O, the image of point C is point D. Describe the rotation (be sure to include degree).


145°CCW about point O/P315°CW AC



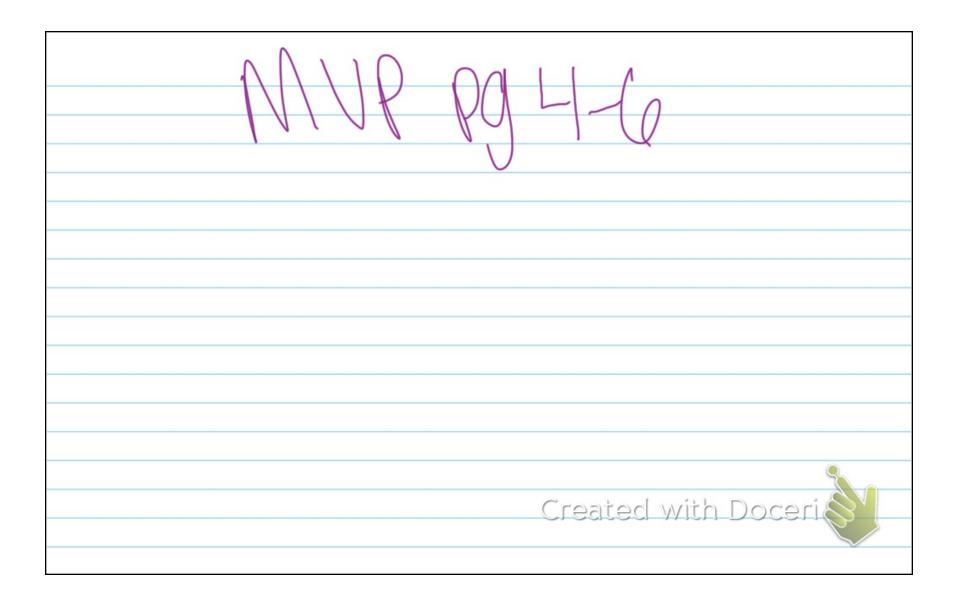
A regular polygon can be mapped onto itself if we rotate in multiples of the central angle measure.

The central angle of a regular polygon is found by

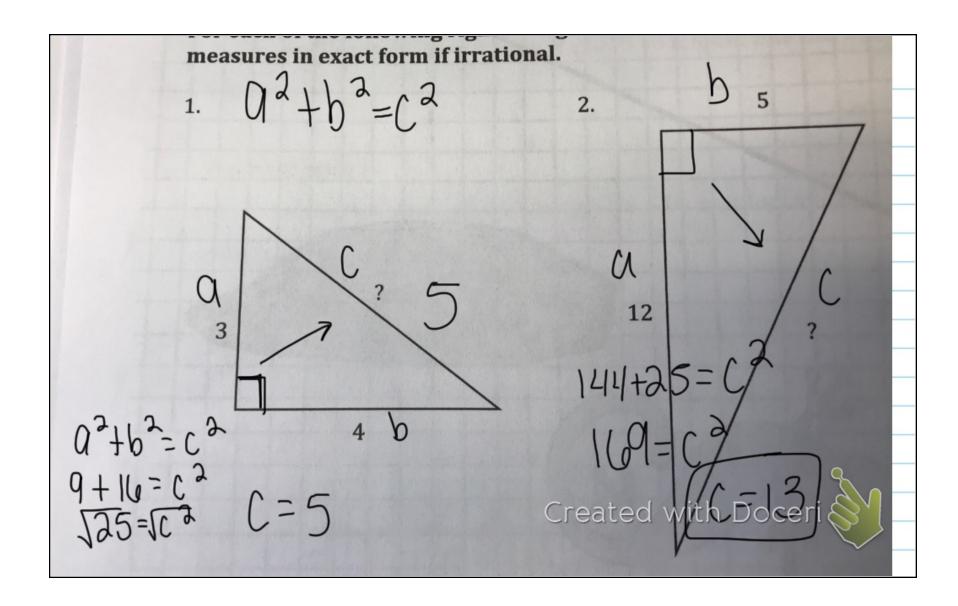


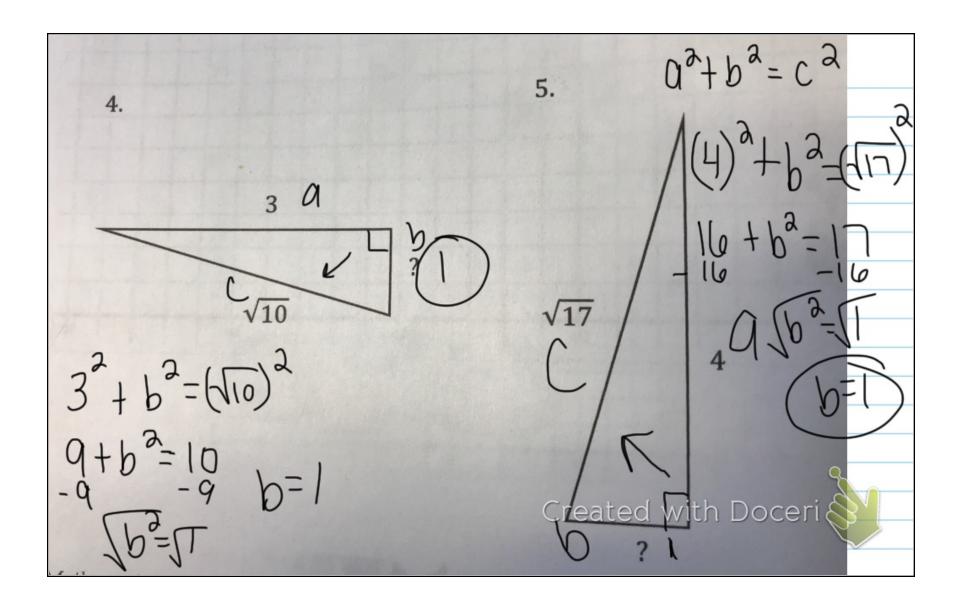
Part 2 - Parallelograms and Rotational Symmetry

6. Given Parallelogram ABCD, there is a center of rotation, O, that will map point A onto point C.


a. What are the coordinates of 0?

b. What degree of rotation mapped C onto A using the center 0?




c. If we rotate the parallelogram around center θ using the degree measure found in part b, $\angle D$ maps to $\angle D$

And other line	Coops over and
USE PAIN & FOLD	X=0 y=0
	y= x
	Created with Doceri

Page 10 of 12

