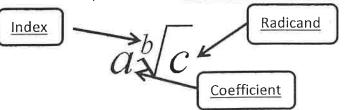
| QUIZ DATES:               | &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEST DATE: |    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| Math 2                    | Santa | Name       |    |
| Unit 3 – Quadratic Functi | ons Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date       | Pd |
| Lesson 1 → Simplifying So | quare Roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |    |

| PERFECT | <b>SQUARES</b> |
|---------|----------------|
|---------|----------------|

| NUMBER<br>MULTIPLIED | PERFECT<br>SQUARES | NUMBER<br>MULTIPLIED | PERFECT<br>SQUARES | NUMBER<br>MULTIPLIED | PERFECT<br>SQUARES |
|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|
| 1 X 1 =              |                    | 7 X 7 =              | ,                  | 13 X 13 =            |                    |
| 2 X 2 =              |                    | 8 X 8 =              |                    | 14 X 14 =            |                    |
| 3 X 3 =              |                    | 9 X 9 =              |                    | 15 X 15 =            |                    |
| 4 X 4 =              |                    | 10 X 10 =            |                    | 16 X 16 =            |                    |
| 5 X 5 =              | -                  | 11 X 11 =            |                    | 17 X 17 =            |                    |
| 6 X 6 =              |                    | 12 X 12 =            |                    | 18 X 18 =            |                    |

## SQUARE ROOTS and CUBE ROOTS

|                                | I the torrespond rejains       | the number to the second n | OWOr  |
|--------------------------------|--------------------------------|----------------------------|-------|
| Taking the square root of a nu | uper is the inverse of raising | the number to the second p | ower. |


For example: If  $3^2 =$ \_\_\_\_\_, then  $\sqrt{9} =$ \_\_\_\_. For example: If  $7^2 =$ \_\_\_\_, then  $\sqrt{49} =$ \_\_\_\_.

Taking the cube root of a number is the inverse of raising the number to the third power.

For example: If  $3^3 =$ \_\_\_\_\_, then  $\sqrt[3]{27} =$ \_\_\_\_\_. For example: If  $7^3 =$ \_\_\_\_\_, then  $\sqrt[3]{343} =$ \_\_\_\_\_.

#### PARTS OF A RADICAL

An expression that contains a square root is a \_\_\_\_\_\_. It can have three parts.



> Simplify the following radical expressions.

 $\sqrt{100} =$   $\sqrt{225} =$   $-2\sqrt{144} =$ 

Lesson 1 → Simplifying Square Roots **HOMEWORK** 

- > What is the radicand is not a perfect square but has a factor that is a perfect square?
  - Simplify:  $\sqrt{24}$  =

What is the highest factor of 24 that is also a perfect square? \_\_\_\_\_. Therefore, 24 = \_\_\_\_.

• Simplify:  $\sqrt{32}$  =

What is the highest factor of 32 that is also a perfect square? \_\_\_\_\_. Therefore, 32 = \_\_\_\_\*

• Simplify:  $\sqrt{54}$ 

What is the highest factor of 54 that is also a perfect square? \_\_\_\_\_. Therefore, 54 = \_\_\_\_ \* \_\_\_\_.

## **PERFECT SQUARES:**

> Classwork:

| 1. | √ <u>18</u> | 2. | √20         | 3. | $\sqrt{40}$ | 4. | √50  | 5.  | √ <u>63</u>             |
|----|-------------|----|-------------|----|-------------|----|------|-----|-------------------------|
| 6. | ±√63        | 7. | $\sqrt{48}$ | 8. | √ <u>98</u> | 9. | 2√75 | 10. | $\frac{1}{2}\sqrt{256}$ |
|    |             |    |             |    |             |    |      |     |                         |

| 1.  | 5√50         | 2.  | 3√32                    | 3.  | -√52           | 4.  | $\frac{1}{6}\sqrt{99}$  | 5.  | ±√48   |
|-----|--------------|-----|-------------------------|-----|----------------|-----|-------------------------|-----|--------|
| 6.  | 2√18         | 7.  | $-4\sqrt{12}$           | 8.  | 5√24           | 9.  | $\frac{-1}{2}\sqrt{20}$ | 10. | 5√500  |
| 11. | $-\sqrt{44}$ | 12. | 12√60                   | 13. | $-10\sqrt{80}$ | 14. | $\frac{1}{2}\sqrt{8}$   | 15. | ±√12   |
| 16. | 3√250        | 17. | $-\frac{4}{5}\sqrt{50}$ | 18. | ±7√90          | 19. | 3√10                    | 20. | ±2√117 |

| Math 2                       |           |
|------------------------------|-----------|
| Unit 3 – Quadratic Functions | Continued |
| Lesson 2 → Sets of Numbers   |           |

Name\_\_\_\_\_Pd\_\_\_\_

terminated decimal

terminated decimal

terminated decimal

In mathematics, the numbers we use can be categorized into sets. Our number system has two sets, the real numbers and the complex numbers. We will work with both the real numbers and the complex numbers in this course.

### > DEFINITIONS:

**REAL NUMBERS** is the set of rational numbers and irrational numbers.

COUNTING NUMBERS OR NATURAL NUMBERS is the set of numbers defined by {1, 2, 3, 4, 5, ...}.

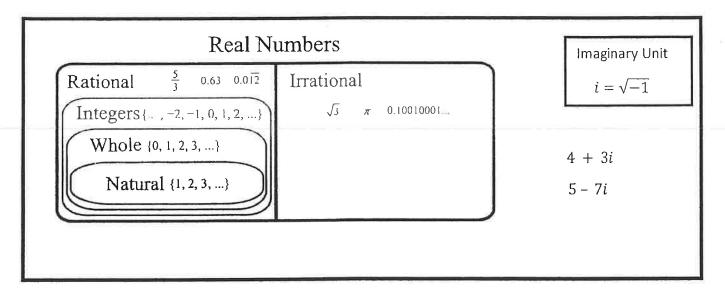
WHOLE NUMBERS is the set of numbers defined by {0, 1, 2, 3, 4, 5, ...}.

**INTEGERS** is the set of numbers defined by {..., -3, -2, -1, 0, 1, 2, 3, ...} or the set of all positive and negative whole numbers.

**RATIONAL NUMBERS** is the set of numbers defined by  $\{\frac{p}{q} \mid p \text{ and } q \text{ are integers}, q \neq 0\}$  or the set of numbers in which the decimal terminates or the decimal repeats.

Examples: These are all rational numbers.

$$\frac{1}{2} = 0.5$$


$$\frac{-2}{3} = -0.6666 \dots$$
repeating decimal
$$\frac{2}{7} = 0.285714285 \dots$$
repeating decimal
$$\frac{2}{4} = 2.25$$
terminated decimal

IRRATIONAL NUMBERS is the set of numbers in which the decimal does <u>not terminate</u> and does <u>not repeat</u>.

Examples: These are all irrational numbers.

$$\sqrt{2}$$
 = 1.414213562... does not terminate nor repeats  $\pi$  = 3.141592654... does not terminate nor repeats  $\frac{\sqrt{3}}{5}$  = 0.3464101615... does not terminate nor repeats

## **COMPLEX NUMBERS**



<u>COMPLEX NUMBERS</u>: the set of numbers including the Real Numbers and the imaginary unit, i. Complex number are written in the form a + bi where a is the real part and bi is the imaginary part.

### **IMAGINARY UNIT:**

Some polynomial equations have complex (non-real) solutions, when a negative number is under the radical symbol.

For example: there is no real solution to  $\sqrt{-16}$  or  $\sqrt{-36}$ .

Mathematicians created a new system of numbers using the imaginary unit, i, defined as  $i = \sqrt{-1}$ . With this new system of numbers, radicals of negative numbers can now be simplified!

Therefore:  $i = \sqrt{-1}$ Simplify:  $\sqrt{-16} =$   $\sqrt{-36} =$   $\sqrt{-27} =$   $\sqrt{-45} =$   $\sqrt{-75} =$ 

> Determine whether each number is rational or irrational:

|      | ettrer ederi framber 19 i |                       |                             |        |
|------|---------------------------|-----------------------|-----------------------------|--------|
| 6    | 5                         | $\sqrt{6} + \sqrt{3}$ | 1 - π                       | 5 + √6 |
| 0. 6 | π                         | $\frac{\pi}{2}$       | $\frac{\sqrt{6}}{\sqrt{3}}$ | 0.45   |
| -6   | 0.456789                  | 4 + √3                | 0                           | 0. 273 |

| >   | Express each number     | r in ter | ms of $m{i}$ and then $m{sim}$ | plify: |                          |     |                                    |
|-----|-------------------------|----------|--------------------------------|--------|--------------------------|-----|------------------------------------|
| 1.  | √-36                    | 2.       | $\sqrt{-100}$                  | 3.     | $-\sqrt{-81}$            | 4.  |                                    |
| 5,  | $\frac{1}{8}\sqrt{-64}$ | 6.       | $\frac{-2}{3}\sqrt{-9}$        | 7.     | $\frac{3}{4}\sqrt{-144}$ | 8.  | $\frac{1}{3}\sqrt{-25}$            |
| 9.  | $\sqrt{-\frac{1}{4}}$   | 10.      | $\sqrt{-\frac{16}{25}}$        | 11.    | $4\sqrt{-\frac{49}{64}}$ | 12. | $\frac{3}{5}\sqrt{-\frac{100}{9}}$ |
| 13. | $\sqrt{-3}$             | 14.      | √ <del>-29</del>               | 15.    | 3√−11                    | 16. | $-\sqrt{-10}$                      |
| 17. | √-20                    | 18.      | -√-28                          | 19.    | 2√−75                    | 20. | 5√−8                               |
| 21. | 3√–98                   | 22.      | $-2\sqrt{-75}$                 | 23.    | $\pm\sqrt{-45}$          | 24. | $\frac{3\sqrt{7}}{\sqrt{-28}}$     |

> Simplify:

$$1. \sqrt{9} =$$
  $2. \sqrt{25} =$   $3. \sqrt{81} =$   $4. \sqrt{121} =$   $=$ 

If a number is a perfect square, simplify it.

If not, leave the number in radical form (do not change into a decimal).

There are many methods that can be used to solve a quadratic equation:

- 1) Graphing the related parabola → look for x-intercepts
- 2) Solve by Factoring → equation must be equal to 0
- 3) Square Root Property: If  $x^2 = a$ , then  $x = \pm \sqrt{a}$
- 4) Completing the Square  $\rightarrow$  works best when a = 1 and b is an even number
- 5) QUADRATIC FORMULA
- Quadratic Equation:  $ax^2 + bx + c = 0$
- Practice evaluating  $b^2 4ac$  and 2a

| $1. \ 2x^2 + 3x - 5 = 0$ | $2. \ x^2 + 4x + 1 = 0$  | $3. \ 3x^2 - 2x + 3 = 0$ |
|--------------------------|--------------------------|--------------------------|
| $b^2-4ac$ :              | $b^2-4ac$ :              | $b^2-4ac$ :              |
|                          |                          |                          |
|                          |                          |                          |
| [2 <i>a</i> ]:           | [2 <i>a</i> ]:           | [2 <i>a</i> ]:           |
| $4. \ x^2 - 6x - 2 = 0$  | $5. \ -4x^2 + x + 5 = 0$ | $6x^2 + 2x + 6 = 0$      |
| $b^2-4ac$ :              | $b^2-4ac$ :              | $b^2-4ac$ :              |
|                          |                          |                          |
|                          |                          |                          |
| [2a]:                    | [2 <i>a</i> ]:           | [2a]:                    |

- ✓ Used to solve for x in the equation  $ax^2 + bx + c = 0$
- $\checkmark$  The Quadratic Formula is most helpful to solve for x when the equation will not factor.

| $1. \ 2x^2 - x - 6 = 0$                     | $b^2 - 4ac$ | $2. \ x^2 + 4x - 9 = 0$                        | $b^2 - 4ac$   |
|---------------------------------------------|-------------|------------------------------------------------|---------------|
|                                             | [2a]        |                                                | [2 <i>a</i> ] |
| $x =$ 3. $x^2 + 3x - 5 = 0$                 | $b^2 - 4ac$ | $x = _{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$  | $b^2-4ac$     |
|                                             | [2a]        |                                                | [2a]          |
| $x = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$ | $b^2 - 4ac$ | $x = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}$ | $b^2 - 4ac$   |
|                                             | [2a]        |                                                |               |
| x =                                         | 3           | x =                                            |               |

| 1. $4x^2 + 11x - 20 = 0$ | $b^2-4ac$ |
|--------------------------|-----------|
|                          |           |
|                          |           |

$$2. \ x^2 - 3x - 3 = 0$$
 
$$b^2 - 4ac$$

|     | [2 <i>a</i> ] |
|-----|---------------|
| x = |               |
|     | [72 4]        |

3. 
$$x^2 + x - 1 = 0$$

$$4. \ 4x^2 + 6x - 1 = 0$$

5.  $x^2 + 3x - 10 = 0$ 

6. 
$$5x^2 + 3x + 1 = 0$$

 $b^2 - 4ac$ 

2a

2*a* 

2a

 $b^2 - 4ac$ 

2*a* 

7.  $5x^2 + 50x + 125 = 0$ 

x =

$$b^2 - 4ac$$

8.  $2x^2 + 18x + 39 = 0$ 

 $b^2 - 4ac$ 

2a

2a

x =

| $1. \ 4x^2 + 8x - 1 = 0$   | $b^2 - 4ac$   | $2. \ x^2 - 10x + 25 = 0$  | $b^2 - 4ac$   |
|----------------------------|---------------|----------------------------|---------------|
| x =                        | [2 <i>a</i> ] | x =                        | [2a]          |
| $3. \ 4x^2 + 11x - 20 = 0$ | $b^2 - 4ac$   | $4. \ x^2 + 2x + 4 = 0$    | $b^2 - 4ac$   |
| x =                        | [2a]          | x =                        | [2a]          |
| $5. \ x^2 + 8x + 5 = 0$    | $b^2-4ac$     | 6. $x^2 + 12x - 4 = 0$     | $b^2 - 4ac$   |
| x =                        | [2 <i>a</i> ] | x =                        | [2 <i>a</i> ] |
| $7. \ x^2 - 6x + 63 = 0$   | $b^2-4ac$     | $8. \ 2x^2 + 12x - 18 = 0$ | $b^2 - 4ac$   |
| x =                        | [2a]          | x =                        | [2a]          |

> Ways to solve quadratic equations in standard for  $(ax^2 + bx + c = 0)$ :

| FACTORING: $x^2 - 7x + 12 = 0$ | COMPLETEING the SQUARE:<br>$x^2 - 6x + 12 = 0$ | QUADRATIC FORMULA                                      |
|--------------------------------|------------------------------------------------|--------------------------------------------------------|
| x - /x + 12 - 0                | X 0X 1 12 0                                    | $x^2 - 6x + 12 = 0$ (this is what we will learn today) |
|                                | 4)                                             | ii i                                                   |
| $\chi =$                       | x =                                            |                                                        |

- The Quadratic Formula is used to solve any quadratic equation, especially those that will not factor.
- $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

• Examples: Solve using the Quadratic Formula

| • Examples: Solve using the Quadratic Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| $1. \ x^2 - 5x - 24 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2. \ x^2 + 5x + 5 = 0$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| G Company of the Comp |                            |
| $3. \ 4x^2 + 8x - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4. \ 4x^2 + 11x - 20 = 0$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s ·                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y.                         |
| $5. \ x^2 - 10x = -25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6. \ x^2 + 2x + 4 = 0$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I .                        |

- Solve using the Quadratic Formula  $\Rightarrow x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \* Express answers in simplest radical form or complex form. NO DECIMALS!!

| 1. | $4x^2$ | + | 11x - | 20 = | 0 |  |
|----|--------|---|-------|------|---|--|
|    |        |   |       |      |   |  |

$$2. \quad x^2 - 5x - 24 = 0$$

$$3. x^2 - 3x - 3 = 0$$

$$4. x^2 + 5x + 5 = 0$$

$$5. x^2 + x - 1 = 0$$

6. 
$$4x^2 + 8x = 1$$

| $7. 	 4x^2 + 7x - 15 = 0$ | $8. \qquad x^2 + 3x - 10 = 0$ |
|---------------------------|-------------------------------|
|                           |                               |
|                           |                               |
|                           |                               |
|                           |                               |
|                           |                               |
|                           |                               |
| $9. 	 x^2 - x + 3 = 0$    | $10.  2x^2 - 14x + 23 = 0$    |
| 1 · 2                     |                               |
|                           |                               |
|                           |                               |
|                           | R                             |
| 2 2 40 0                  | $12.  2x^2 + 18x + 39 = 0$    |
| $11.  x^2 - 2x - 48 = 0$  | 12.  2x + 10x + 3y = 0        |
|                           |                               |
| €                         |                               |
|                           |                               |
|                           |                               |
| $13.  5x^2 + 3x + 1 = 0$  | $14.  5x^2 + 50x + 125 = 0$   |
| 13. 32 1 32 1 1 - 0       |                               |
|                           |                               |
|                           |                               |
|                           |                               |
|                           |                               |
|                           |                               |

Ė

Solve using the best method: Factoring, Completing the Square or Quadratic Formula Express all solutions in simplest form.

| 1. | $x^2 +$ | 4x - | 9 = | = 13 |
|----|---------|------|-----|------|

 $2. x^2 + 7x + 12 = 0$ 

3. 
$$7(x-3)^2 = 35$$

 $4x^2 = 36$ 

5. 
$$x^2 = 81$$

6.  $x^2 + 9x + 38 = 13$ 

7. 
$$3x^2 - 6x = 13$$

 $8. x^2 + 6x - 8 = 0$ 

9. 
$$x^2 = 3x + 8$$

10.  $x^2 - 121 = 0$ 

11. 
$$(x+2)^2-6=11$$

12.  $5x^2 - 7x + 13 = 0$ 

# Forms of a quadratic equation:

- $\triangleright$  Vertex Form:  $y = a(x h)^2 + k$
- $\triangleright$  Standard Form:  $y = ax^2 + bx + c$

✓ If an equation is in standard form we can use the graphing calculator to find the vertex.

Complete the information for each parabola by graphing on the calculator.

| $y = -2x^2 - 12x - 16$ | $y = 3x^2 + 10x - 2$  | $y = 2x^2 + 15x + 29$ |
|------------------------|-----------------------|-----------------------|
| 1. Vertex:             | 1. Vertex:            | 1. Vertex:            |
| 2. Maximum or Minimum  | 2. Maximum or Minimum | 2. Maximum or Minimum |
| 3. Axis of Symmetry:   | 3. Axis of Symmetry:  | 3. Axis of Symmetry:  |
| 4. y – intercept:      | 4. y – intercept:     | 4. y – intercept:     |
| 5. x – intercepts:     | 5. x – intercepts:    | 5. x – intercepts:    |
| 6. Domain:             | 6. Domain:            | 6. Domain:            |
| 7. Range:              | 7. Range:             | 7. Range:             |

- How can we solve a quadratic equation that has irrational or complex solutions?
- **COMPLETING THE SQUARE** will allow us to find all solutions (rational, irrational & imaginary).
  - 1) **REWRITE** as  $x^2 + bx + c = 0$  as  $x^2 + bx = -c$
  - 2)  $x^2 + bx + \underline{\hspace{1cm}} = -c + \underline{\hspace{1cm}}$
  - 3) **COMPLETE THE SQUARE** by taking half of b; square it and ADD IT TO BOTH SIDES of the equation in the blanks.
  - 4) **FACTOR** the perfect square trinomial.
  - 5) Take the SQUARE ROOT of both sides. Don't forget to include a  $\pm$  to create 2 solutions.
  - 6) **SOLVE** both equations. **SIMPLIFY** all irrational and complex solutions.

| 1. | $x^2 - 6x + 8 = 0$ | 2. | $x^2 + 16x - 16 = 0$ |
|----|--------------------|----|----------------------|
| I  |                    | 1  |                      |

| 3. | $x^2 + 12x + 43 = 0$ | 4. | $x^2 - 2x - 15 = 0$ |
|----|----------------------|----|---------------------|
|    |                      |    |                     |
|    |                      |    |                     |
|    |                      |    |                     |
|    |                      |    |                     |
|    |                      |    |                     |
|    |                      |    |                     |

- 1) **BEGIN** with  $ax^2 + bx + c = 0$  and **MULTIPLY** "a" to "c"
- 2) REWRITE  $x^2 + bx = -c \cdot a$
- 3)  $x^2 + bx + \underline{\hspace{1cm}} = -c \cdot a + \underline{\hspace{1cm}}$
- 4) **COMPLETE THE SQUARE** by taking half of *b*; square it and ADD IT TO BOTH SIDES of the equation in the blanks.
- 5) **FACTOR** the perfect square trinomial.
- 6) Take the **SQUARE ROOT** of both sides. Don't forget to include a  $\pm$  to create 2 solutions.
- 7) **SOLVE** both equations. **SIMPLIFY** all irrational and complex solutions.
- 8) DIVIDE by "a" and REDUCE all final solutions.

| 5. | $3x^2 + 10x - 8 = 0$  | 6. | $4x^2 - 8x + 3 = 0$ |
|----|-----------------------|----|---------------------|
| 7. | $4x^2 - 16x + 71 = 0$ | 8. | $2x^2 + 5x - 4 = 0$ |
|    |                       | 2  |                     |
|    |                       |    |                     |

## **❖** SOLVE BY COMPLETING THE SQUARE:

| 1. | $x^2 +$ | 14x - | 51 | = 0 |
|----|---------|-------|----|-----|
|----|---------|-------|----|-----|

$$2. \qquad x^2 - 12x + 23 = 0$$

3. 
$$x^2 - 4x + 6 = 0$$

$$4. \qquad x^2 - 10x + 18 = 0$$

$$5. \qquad x^2 + 18x - 40 = 0$$

$$5. x^2 + x + 9 = 0$$

7. 
$$x^2 + 2x + 20 = 0$$

$$8. x^2 + 4x + 7 = 0$$

|     | Remember the DRS r  | nethod: |     | 2                     |   |
|-----|---------------------|---------|-----|-----------------------|---|
| 9.  | $3x^2 - 8x + 4 = 0$ |         | 10. | $3x^2 - 2x - 5 = 0$   |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       | , |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     | la .                |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     | =       |     |                       |   |
|     |                     |         |     |                       |   |
| 11. | $2x^2 - 2x - 5 = 0$ |         | 12. | $10x^2 + 4x + 68 = 0$ |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     | 1       |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         |     |                       |   |
|     |                     |         | 5   |                       |   |

Solve by factoring.

1.) 
$$x^2 - 64 = 0$$

2.) 
$$8x^2 - 2x - 3 = 0$$

**2.)** 
$$8x^2 - 2x - 3 = 0$$
 **3.)**  $x^2 + 3x - 40 = 0$ 

**4.)** 
$$2x^2 + 3x + 1 = 0$$
 **5.)**  $4x^2 - 8x = 0$ 

5.) 
$$4x^2 - 8x = 0$$

6.) 
$$x^2 + 5x - 14 = 0$$

Solve by square roots.

7.) 
$$x^2 = 81$$

$$3.) \quad (4x-3)^2 = 25$$

9.) 
$$x^2 = 17$$

7.) 
$$x^2 = 81$$
 8.)  $(4x - 3)^2 = 25$  9.)  $x^2 = 17$  10.)  $(x - 5)^2 = 45$ 

Solve by completing the square.

11.) 
$$x^2 - 2x - 3 = 0$$

**12.)** 
$$x^2 + 2x - 14 = 0$$

Solve using the quadratic formula.

| $13. \ 2x^2 + 5x + 3 = 0$ | $b^2 - 4ac$   | <b>14.</b> $2x^2 + x - 6 = 0$ | $b^2 - 4ac$   |
|---------------------------|---------------|-------------------------------|---------------|
|                           |               |                               |               |
|                           | [2 <i>a</i> ] |                               | [2a]          |
| x =                       |               | x =                           |               |
| $15. \ 3x^2 - 2x - 5 = 0$ | $b^2 - 4ac$   | <b>16.</b> $x^2 - 2x - 5 = 0$ | $b^2 - 4ac$   |
|                           |               |                               |               |
|                           | [2a]          |                               | [2 <i>a</i> ] |
| x =                       |               | x =                           |               |
| $17. \ 2x^2 - 6x - 9 = 0$ | $b^2 - 4ac$   | $18.  x^2 - 12x + 36 = 0$     | $b^2 - 4ac$   |
|                           |               |                               |               |
|                           | <u>[2a]</u>   |                               | [2a]          |
| x =                       |               | x =                           |               |

Solve using the best method: Factoring, Completing the Square or Quadratic Formula Express all solutions in simplest form.

| 1  | $\chi^2$   | 1  | 100 | a     | 12     |
|----|------------|----|-----|-------|--------|
| 1. | $\chi^{-}$ | +- | 4x  | <br>7 | <br>12 |

ta tag a

 $2. x^2 + 7x + 12 = 0$ 

$$3. \qquad 7(x-3)^2 = 35$$

4.  $4x^2 = 36$ 

5. 
$$x^2 = 81$$

 $6. \qquad x^2 + 9x + 38 = 13$ 

7. 
$$3x^2 - 6x = 13$$

8.  $x^2 + 6x - 8 = 0$ 

9. 
$$x^2 = 3x + 8$$

10.  $x^2 - 121 = 0$ 

11. 
$$(x+2)^2 - 6 = 11$$

 $12. \quad 5x^2 - 7x + 13 = 0$