QUIZ DATE:	&		TEST DA	TE:		
Math 2 Unit 2 – Quadratic Fund Lesson 1 – Transformat		0		me te		_Pd
exactly one Graphically	Nin Ole Nelement of the rang , a function must pa	_: set of all x _: set of all y _ is a relation ge. ss the	of ordered pairs. values in a relati values in a relati in which each ele	on on ment of the do		d with
order to be	classified as a funct	ion.				
1. Is $F(x)$ a function $F(x)$ as function $F(x)$ and $F(x)$ and $F(x)$ and $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ and $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are $F(x)$ are $F(x)$ are $F(x)$ and $F(x)$ are	h of the following ke	ey points on F	F(-1) =	= 1	ction is $y =$	F(x).
	phing: $y = F(x)$ ble below for this		nd then graph on	the coordinate.		
x y -1 1 2 4 Describe the	transformation:	e domain		F(x)		

or the range of the function?

09.1

 \triangleright Graph: y = F(x) - 3.

х	у/
-7	
1	
2	X
4	$/ \setminus$

C nuob

Describe the transformation: Trans at Did the transformation affect the domain

or the range of the function?

Checkpoint: Describe the affect for the following functions.

Equation	Effect to the graph		
Example: $y = F(x) + 18$	Translate up 18 units		
1. y = F(x) - 10	11 ()		
2. y = F(x) + 3	11 (7 3		
3. $y = F(x) + 32$	II U JA		
4. y = F(x) - 1	U 0 1		

For the the transfer of the second s

Describe the transformation:

range of the function?

For Graph:
$$y = F(x-3)$$
.

Describe the transformation:

T(MS)(H Hight 3

Did the transformation affect the domain or the range of the function?

$$f(x) = f(x+k) \pm 0$$

Checkpoint: Describe the affect for the following functions.

Equation	Effect to the graph			
Example: $y = F(x + 18)$	Translate left 18 units			
$1. \qquad y = F(x-10)$	11 R 10			
$2. \qquad y = F(x) + 7$				
3. y = F(x + 48)	11 L 48			
$4. \qquad y = F(x) - 22$	11 0 22			
5. $y = F(x + 30) + 18$	11 L 30 / V 18			

Checkpoint: Write the equation for each translation:

Equation	Effect to the graph	
Example: $y = F(x + 8)$	Translate left 8 units	
1. $V = f(x) + 20$	Translate up 29 units	
$2. \qquad \mathcal{V} = \mathcal{F}(X-\mathcal{I})$	Translate right 7	
3. \(\sigma = \frac{1}{2} \left(\times \frac{1}{2} \left(\times \frac{1}{2} \right) \)	Translate left 45	
4. 4- 5(X+5)+14	Translate left 5 and up 14	
5. $M = \int f(x-x) - 2$	Translate down 2 and right 6	

- Now let's look at a new function. Its notation is H(x).
- 1. What are the key points? (List them in the chart)

2. Describe the effect on the graph for each of the following.

a.
$$H(x-2)$$

c. H(x+2) - 3

Use your answers to questions 1 and 2 to help you sketch each graph without using a table. 3.

b.
$$y = H(x) + 7$$

$$y = H(x+2) - 3$$

Recall that the equation: y = F(x)

Now let's graph: y = -F(x)

 $(x,y) \rightarrow ($

Describe the transformation:

Did the transformation affect the domain or the range of the function?

ONHIX

 \triangleright Now let's graph: y = F(-x)

$$(x,y) \to ($$

Describe the transformation:

Did the transformation affect the domain or the range of the function?

• Checkpoint: H(x) is shown on each grid.

Now let's return to the function whose equation is y = F(x).

Complete the chart with the key points.

x $F(x)$	
~ 1 1 XY	= 4
1 -1×4	= -11
2 ~ 1×4	J
4-244	- 4
	8

> Let's suppose that y = 4F(x)

$$(x,y) \rightarrow ($$

Describe the transformation:

Stretch by S.F. of 4

Did the transformation affect the domain or the range of the function?

Factor of 4

Figure 6. Graph: $y = \frac{1}{2}F(x)$.

- LXT

 $(x,y) \to ($

Describe the transformation:

Compress by S.

Did the transformation affect the domain or the range of the function?

1) hx-axis 2) 5 by 3

 \triangleright Graph: $y = \widehat{F}(x)$.

Describe the transformation:

1) Kx-axis

a) Dilate: Steeth by Scale factors

Did the transformation affect the domain or the range of the function?

- \triangleright Checkpoint: Let's revisit H(x).
- 1. Describe the effect on the graph for each of the following.

Example: -5H(x) Each point is reflected in the x-axis and is 5 times as far from the x-axis.

- a. 3H(x)
- b. -2H(x)
- c. $\frac{1}{2}H(x)$
- 2. Sketch each graph without using a table.
- $a. \quad y = 3H(x)$

$$(x,y)\to ($$

b. y = -2H(x)

$$(x,y) \rightarrow ($$

c. $y = \frac{1}{2}H(x)$

 $(x,y) \to ($

- \triangleright Graph: y = -D(x) 4
- 1. List the transformations needed to sketch the graph. (Remember, to be careful with order.)

$$3. \quad (x,y) \to ($$

- \triangleright Graph: y = 3D(-x)
- 1. List the transformations needed to sketch the graph. (Remember, to be careful with order.)

3. Plot the new points and sketch the graph.

$$(x,y) \to ($$

> Checkpoint:

1. Graph:
$$y = 3C(x) + 5$$

2. Graph:
$$y = -G(x-3) - 6$$

