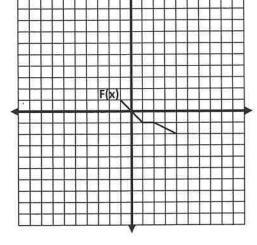
QUIZ DATES:	&
Math 2 – Honors	

Unit 2 – Quadratic Functions

Lesson 1 - Transformations

Review:	D _a

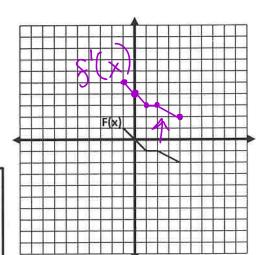
• ______: set of all x values in a relation


• _____: set of all y values in a relation

exactly one element of the range.

• Graphically, a function must pass the VCCAL INC HOST (VLT) in order to be classified as a function.

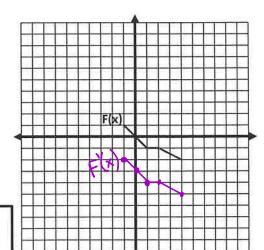
- \triangleright Examine the graph of F(x) to the right:
 - 1. Is F(x) a function? Why or why not?
 - 2. What is the domain of F(x)?
 - 3. What is the range of F(x)?


 $\begin{array}{c|cc}
x & F(x) \\
-1 & \downarrow \\
1 & - \downarrow \\
2 & - \downarrow \\
4 & - \searrow
\end{array}$

4. Evaluate each of the following key points on F(x):

- Remember that F(x) is another name for the $y-values \to the$ equation of the function is y=F(x).
- \triangleright Now let's try graphing: y = F(x) + 4.
- ${f >}\;\;$ Complete the table below for this new function and then graph on the coordinate.

- 1			
	x	y	
	-1	1 44	=5
	1	-1+4	= 3
	2	-144	= 3
	4	-2+4	= 2


Describe the transformation:

Did the transformation affect the domain or the range of the function?

 \triangleright Graph: y = F(x) - 3.

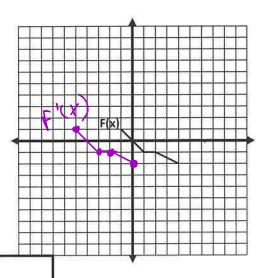
x	у	
-1	1-3	= -3
1	1-3	=-4
2	-1-3	4
4	-a-3	=-5

Describe the transformation:

Translate down 3 Did the transformation affect the domain NOor the range of the function? \sqrt{l}

he transformation affect the domain NO e range of the function? NOCheckpoint: Describe the affect for the following functions.

Checkpoint: Describe the affect for the following functions.

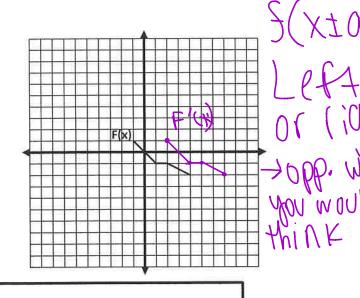

•

Equation	Effect to the graph
Example: $y = F(x) + 18$	Translate up 18 units
1. $y = F(x) - 10$	11 0 10
2. y = F(x) + 3	" U 3
3. $y = F(x) + 32$	11 4 32
4. y = F(x) - 1	u d

Graph: y = F(x + 4).

Complete the table.

	¥	
x + 4	y	
(-5)=-4 ₋₁	1	X+4=-1 - 9
-3=-41	-1	
-2 4-2	-1	
0 -44	-2	


Describe the transformation:

Did the transformation affect the domain or the range of the function?

 \Rightarrow Graph: $y \neq F(x-3)$.

Complete the table.

x	<i>x</i> - 3	y
	-1	
	1	
	2	
	4	

Describe the transformation:

Did the transformation affect the domain or the range of the function?

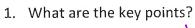
❖ Checkpoint: Describe the affect for the following functions.

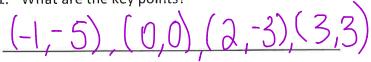
Equation	Effect to the graph	
Example: $y = F(x + 18)$	Translate left 18 units	
1. y = F(x - 10)	11 R 10	
$2. \qquad y = F(x) + 7$	11 1	
$3. \qquad y = F(x + 48)$	11 L 48	ē.
$4. \qquad y = F(x) - 22$	11 D Jg	
5. y = F(x + 30) + 18	1) " L 30/2)" U 18	-DEMOAS

* Checkpoint: Write the equation for each translation: Order of operations

Equation

Equation

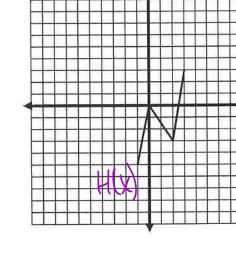

Equation

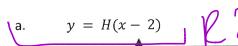

Effect to the graph

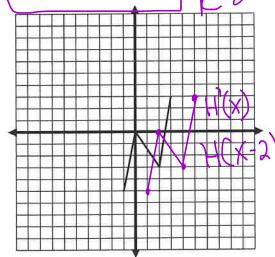
Translate left 8 units $1. \quad \sqrt{-f(x)} + \sqrt{2}$ Translate up 29 units $2. \quad \sqrt{-f(x)} + \sqrt{2}$ Translate right 7 $3. \quad \sqrt{-f(x)} + \sqrt{2}$ Translate left 45 $4. \quad \sqrt{-f(x)} + \sqrt{2}$ Translate left 5 and up 14 $5. \quad \sqrt{-f(x)} + \sqrt{2}$ Translate down 2 and right 6

pg 3

Now let's look at a new function. Its notation is H(x).

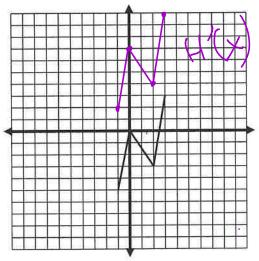

2. Describe the effect on the graph for each of the following.



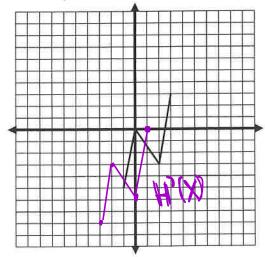

a.
$$H(x-2)$$

b. $H(x) + 7$

c.
$$H(x+2) - 3$$

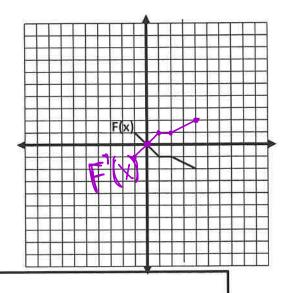


Use your answers to questions 1 and 2 to help you sketch each graph without using a table. 3. Then state the **DOMAIN & RANGE** of the image.



$$b. \quad y = H(x) + 7$$

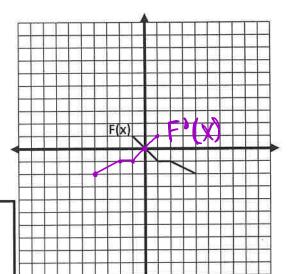
c.
$$y = H(x+2) - 3$$



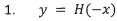
Recall that the equation: y = F(x)

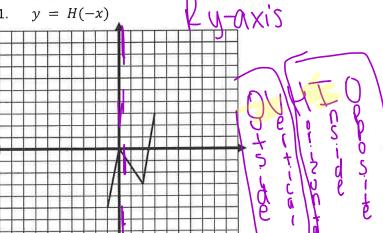
 \triangleright Now let's graph: y = -F(x)

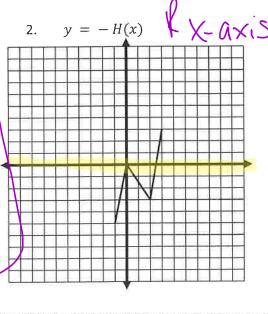
x	F(x)	у
-1	1	-1
1	(
2	2	
4		9


$(x,y) \rightarrow (\bigvee_{x \in X} - \bigvee_{x \in X})$	
---	--

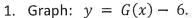
Describe the transformation: $(2x-0x)^5$ Did the transformation affect the domain or the range of the function? $(2x-0x)^5$

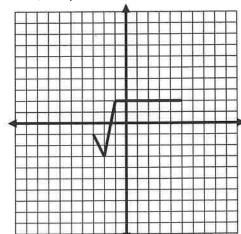

> Graph: y = F(-x) $\sqrt{-0} \times i$

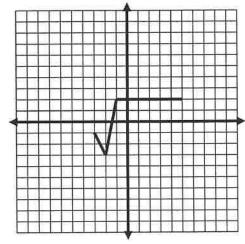

x	- x	у
	-1	
	1	
	2	
	4	



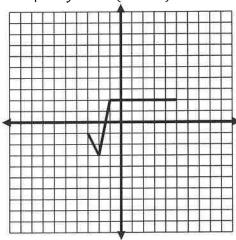
range of the function?

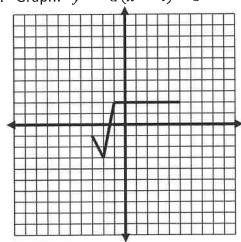

Checkpoint: H(x) is shown on each grid. Graph without making a table





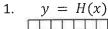
I. On each grid, G(x) is graphed. Graph the given function.

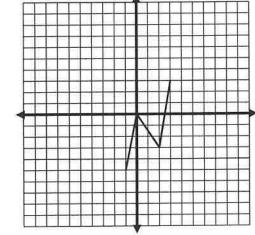



3. Graph: y = G(x + 2) + 5

2. Graph:
$$y = G(x + 6)$$

4. Graph:
$$y = G(x - 4) - 5$$

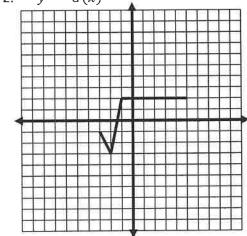

II. Using the understanding you have gained so far, describe the effect to the following functions.


Equation		Effect to Fred's graph	
1, y = F(x) + 82	T	U 87	
$2. \ y = F(x - 13)$	1 (K 13	
3. y = F(x + 9)	1 (
4. $y = F(x) - 55$	1.1	0 55	
$5. \ y = F(x - 25) + 11$	(Ras then Ull	

III. Using the understanding you have gained so far, write the equation that would have the following effect on the graph.

Equation	Effect to the graph
1. $y = f(x + 51)$	Translate left 51 units
2. y=f(x)-76	Translate down 76
3. Y=f(X-31)	Translate right 31
4. 4 = (x-8) - 54	Translate right 8 and down 54
5. $y = f(y+100) - 12$	Translate down 12 and left 100

IV. Determine the domain and range of each parent function.



Domain: ______

Range: _____

 $2. \quad y = G(x)$

Domain: _____

Range: _____

V. Consider a new function y = P(x). Domain is [-2, 2] and range is [-3, 1]

Use your understanding of transformations of functions to determine the domain and range of each of the following functions.

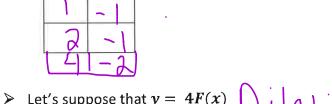
1.
$$P(x) + 5$$

2.
$$P(x + 5)$$

Domain:

Domain:

Range:


Range:

Lesson 2 - Transformations Continued

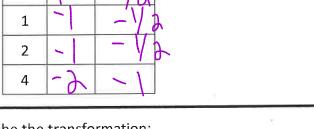
Now let's return to the function whose equation is y = F(x).

Complete the chart with the key points.

x	F(x)
-)	
0	()
1)
2	-
	1-2

LE	t s suppo	se that y	$-\frac{1}{2}$
x	F(x)	y	$(x,y) \rightarrow (\bigcup_{y \in Y} L_{y}(y))$
_1	1 1 1	L - 1	

Describe the transformation:

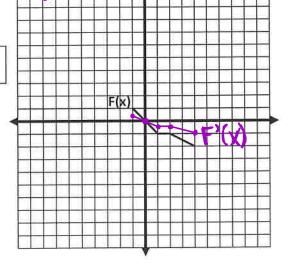

1 MHE DY Scale Factor OF Did the transformation affect the domain or the range of

the function?

Graph: $y = \frac{1}{2}F(x)$

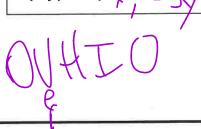
x	F(x)	ν
-1		Va
1	-	-1/2
2	-	- V þ
4	-7	~ \

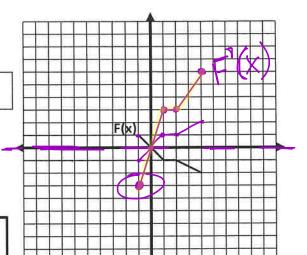
 $(x,y) \rightarrow ($)



Describe the transformation:

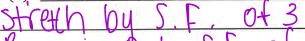
by Scale factor of 1/2


Did the transformation affect the domain or the range of

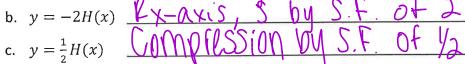

the function?

 \triangleright Graph: $y = \bigcirc F(x)$

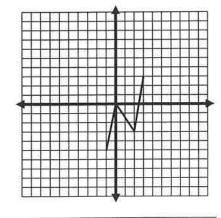
x	F(x)	у
-1	1	-3
1	1	3
2	-	3
4	-2	(0

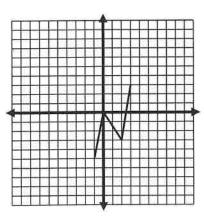

Describe the transformations:

Did the transformation affect the domain or the range of the function?

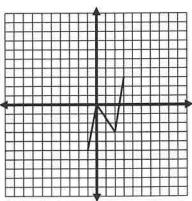

- \triangleright Checkpoint: Let's revisit H(x).
- 1. Describe the effect on Harry's graph for each of the following.

Example: y = -5H(x) Each point is reflected across the x-axis and stretched by a factor of 5


a.
$$y = 3H(x)$$



b.
$$y = -2H(x)$$

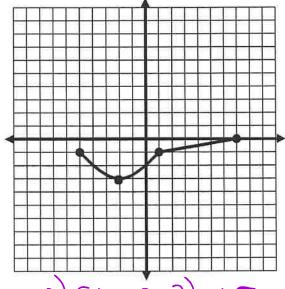

- 2. Sketch each graph without using a table. Then state the DOMAIN & RANGE of the image.
- y = 3H(x)

y = -2H(x)

$$y = \frac{1}{2}H(x)$$

$$(x,y) \rightarrow ($$

$$(x,y) \rightarrow ($$


$$(x,y) \rightarrow ($$

 \triangleright The graph of D(x) is shown.

List the key points of y = D(x).

Since D(x) is our original function, we will refer to it as the parent function.

Note: In transformational graphing where there are multiple steps, it is important to perform the translations last.

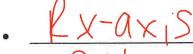
1) L3 2) Sby 2 3) US

 \triangleright **Example:** Let's explore the steps to graph y = 2D(x + 3) + 5, without using tables.

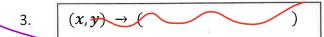
Step 1. The transformations represented in this new function are listed below in the order they will be performed. (See note above.)

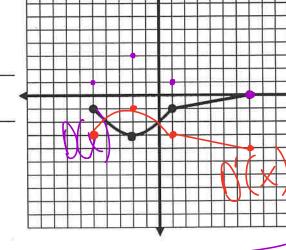
- | Vertical stretch by 2 (Multiply y coordinate by 2)
- Translate left B
- Vranslate up 5

$$(x,y) \to ($$

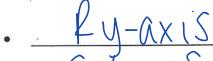

Step 2. Follow the process used in Step 1 above to perform all the transformations on the other 3 points.

Step 3. After completing Step 2, you will have all four key points for the graph. Be sure you use a curve in the appropriate place.

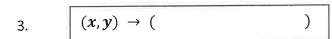

✓ What are the **domain** and **range** of y = D(x)?

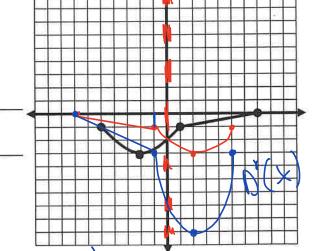

 \checkmark What are the **domain** and **range** of y = D(x) after the transformations?

- 1) PX-0X1S 2) 0 4
- 1. List the transformations needed to sketch the graph. (Remember, to be careful with order.)

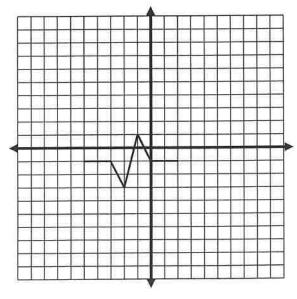


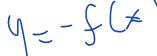
- . 04
- 2. Plot the new points and sketch the graph.

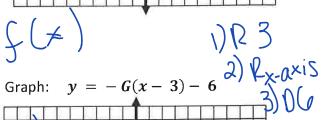


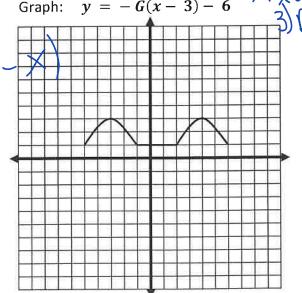


- 1. List the transformations needed to sketch the graph.
 (Remember, to be careful with order.)

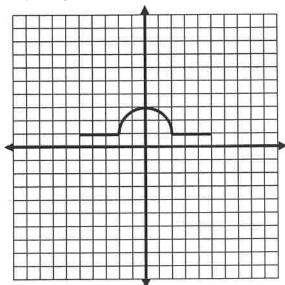

- · Sby S.F. of 3
- 2. Plot the new points and sketch the graph.

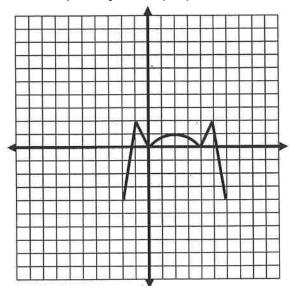





> Checkpoint:

Graph:
$$y = 3C(x) + 5$$



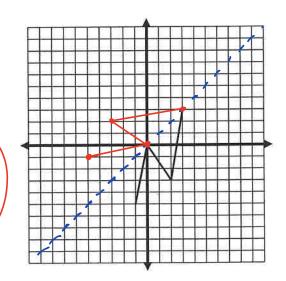


Graph: y = -3H(x)

Graph: y = B(-x) + 8

Finally, let's examine a reflection in the line y = x.

1. Graph this line y = x on the grid.


2. Complete the charts below with the characteristic points:

$$v = H(x)$$

-	_

Reflection

Reflection		
у		

3. Describe what happens when we reflect in the line y = x.

4. What is the domain of H(x)? $\begin{bmatrix} -5 & 3 \end{bmatrix}$ What is the range of H(x)?

 $(x,y) \rightarrow ($

What is the range of the reflection?

A reflection in the line y = x, shows a graph's inverse. Look at the graph of the inverse. Is the inverse a function? Explain how you know.

No Fails
VLT pg.18