
3. Predict how the graphs of each of the following equations will be the same or different from the graph of $y=x^{2}$.

	Similarities to the graph of $y=x^{2}$	Differences from the graph of $y=x^{2}$
$y=\left(5 x^{2} d\right.$	Same vertex	Stretch of S created a steer slope
$y=(x+5)^{2}$	Same Slope	Left S

4. Optima decided to test her ideas using technology. She thinks that it is always a good idea to start simple, so she decides to go with $y=x^{2}+5$. She graphs it along with $y=x^{2}$ in the same window. Test it yourself and describe what you find.

$$
\begin{aligned}
& \text { Ifrand describe what on find higher } \\
& \text { V: } 5 \text { po in ts high } \\
& \text { w/c } f(x)+5 \text { mows up } 5
\end{aligned}
$$

5. Knowing that things make a lot more sense with more representations, Optima tries a few more examples like $y=x^{2}+2$ and $y=x^{2}-3$, looking at both a table and a graph for each. What conclusion would you draw about the effect of adding or subtracting a number to $y=x^{2}$?
Carefully record the tables and graphs of these examples in your notebook and explain why your conclusion would be true for any value of k, given, $y=x^{2}+k$.

6. After her amazing success with addition in the last problem, Optima decided to look at what happens with addition and subtraction inside the parentheses, or as she says it, "adding to the x before it gets squared". Using your technology, decide the effect of h in the equations: $y=(x+h)^{2}$ and $y=(x-h)^{2}$. (Choose some specific numbers for h.) Record a few examples (both tables and graphs) in your notebook and explain why this effect on the graph occurs.

$$
y=(x+h)^{2}
$$

left
7. Optima thought that \#6 was very tricky and hoped that multiplication was going to be more straightforward. She decides to start simple and multiply by -1 , so she begins with $y=-x^{2}$. Predict what the effect is on the graph and then test it. Why does it have this effect?

2.2 Transformers: More Than Meets the y's

Write the equation for each problem below. Use a second representation to check your equation.

1. The area of a square with Gide length x, whecide

length is decreased by 3 , the area ismuliphied by 2 and then 4 square units are added to the area.

SECONDARY MATH II // MODULE 2 STRUCTURES OF EXPRESSIONS - 2.2
3.

4.

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org
ヘ \quad mathematics vision project

