QUIZ DATES:	&	
Math 2 - Honors		
Unit 3 - Quadratic Funct	ions Continued	

Lesson 1 → Simplifying Square Roots

5 X 5 =

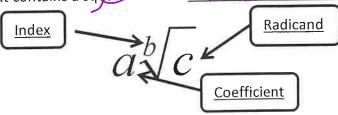
TEST DATE:	
Name	
Date	Pd

PERFECT SQUARES							
NUMBER MULTIPLIED	PERFECT SQUARES	NUMBER MULTIPLIED	PERFECT SQUARES	NUMBER MULTIPLIED	PERFECT SQUARES	NUMBER MULTIPLIED	PERFECT SQUARES
1 X 1 =		6 X 6 =	36	11 X 11 =	121	16 X 16 =	256
2 X 2 =		7 X 7 =	49	12 X 12 =	144	17 X 17 =	2801
3 X 3 =	9	8 X 8 =	64	13 X 13 =	169	18 X 18 =	324
			8	14 V 14 -	196	19 X 19 =	31.1

Taking the square root of a number is the inverse of raising the number to the second power.

10 X 10 =

SQUARE ROOTS and CUBE ROOTS


For example: If $3^2 = 2$, then $\sqrt{9} = 3$. For example: If $7^2 = 40$, then $\sqrt{49} = 3$.

Taking the cube root of a number is the inverse of raising the number to the third power.

For example: If $3^3 = \frac{2}{3}$, then $\sqrt[3]{27} = \frac{3}{3}$. For example: If $7^3 = \frac{3}{3}$, then $\sqrt[3]{343} = \frac{3}{3}$.

PARTS OF A RADICAL

An expression that contains a square root is a _______. It can have three parts.

> Simplify the following radical expressions.

$$\sqrt{100} = \frac{0}{3\sqrt{121}} = \frac{3 \cdot 11 = 33}{3\sqrt{121}} = \frac{3 \cdot 11 = 33}{-\sqrt{225}} = \frac{-15}{-2\sqrt{144}} = \frac{1}{2} \cdot 12 = -24$$

$$\sqrt{25} = \frac{5}{7\sqrt{81}} = \frac{1 \cdot 9 = 3}{2\sqrt{144}} = \frac{1}{2} \cdot 12 = -24$$

$$\pm 9\sqrt{9} = \frac{1}{2} \cdot 9 \cdot 3 = \frac{1}{2} \cdot 2$$

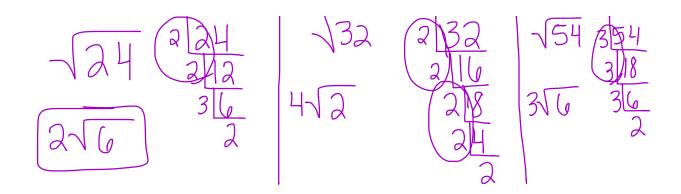
What is the radicand is not a	perfect square	but has a facto	r that is a perfe	ct square?
What is the faultand is not a	perrect square	but has a facto	i that is a perio	ct squai

•	Simplify: $\sqrt{24} = 2\sqrt{6}$		14	. (6	246
---	-----------------------------------	--	----	------	-----

What is the highest factor of 24 that is also a perfect square? _____. Therefore, 24 = _____.

• Simplify:
$$\sqrt{32} = 4\sqrt{2}$$

What is the highest factor of 32 that is also a perfect square? _____. Therefore, 32 = _____.


•	Simplify: $\sqrt{54}$	7. 27 3. 18	\bigcirc	9	356
		5 110	U		

What is the highest factor of 54 that is also a perfect square? _____. Therefore, 54 = _____.

Classwork:

1. √18	2. $\sqrt{20}$	3. $\sqrt{40}$ 540	4. √50 2\50	5. $\sqrt{63}$
3/2	215	2110 36	5 5 5 5 5 5	3(7
6. ±√63	7. $\sqrt{48}$	8. √98	9. √75	10. √256
¥3√7	4√3	7/2	513	\\Q\\
11. $2\sqrt{18}$	12. $-4\sqrt{12}$	13. 5√24	14. $\frac{-1}{2}\sqrt{20}$	15. 5√500
2.3(2	212 -4·2/3	5.2.56	220 - 12-25	5.100.15
6/2	3 -813	1016	5 - 15	5015 5015 5015
16. $-\sqrt{44}$	17. 12√60	18. $-10\sqrt{80}$	19. $\frac{1}{2}\sqrt{8}$	20. $\pm \sqrt{12}$
-2/11	12,15,14	-4015 (30)	12	±2√3
<i>S</i> . 1,	24/15	-10.415		·
21. $3\sqrt{250}$	22. $-\frac{4}{5}\sqrt{50}$	23. $\pm 7\sqrt{90}$	24. $3\sqrt{10}$	25. ±2√117
15 110	-415.552 -412	±21/10	3/10	+6/13
$26. \sqrt{x^2}$	27. $\sqrt{16x^2}$	28. $\sqrt{9x^3}$	29. $\sqrt{27x^4}$	30. $\sqrt{48x^3}$
X	4x	3x5x	3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4x√3x

(3,3,<u>x,x,</u>x

