Math 2 - Honors Unit 1 - Geometric Transformations **Unit Review**

Name		1
Date	Pd	

For each transformation, state the coordinates for each:

	Image of (x, y)	Image of (1,4)	Image of $(-2,7)$
1. Reflect over $y - axis$			
2. Reflect over $x - axis$			
3. Reflect over $y = x$			
4. Reflect over $y = -x$			
5. Rotate 90° clockwise about the origin			
6. Rotate 90° counterclockwise about			
the origin			
7. Rotate 180° about the origin			
8. Rotate 270° about the origin			

- For each of the following, graph and label the image for each transformation described.
- Then write using the correct notation.
- 8. Reflect over the line y = -1
- 9. Rotate 180° about the origin
- 10. Translate right 4 units & down 3 units

- State whether the specified pentagon is mapped to the other pentagon by a reflection, translation, or rotation
- 11. Pentagon 1 to Pentagon 3

12. Pentagon 5 to Pentagon 6

14. Pentagon 1 to Pentagon 2

15. Pentagon 4 to Pentagon 6

Perform each of the transformations using the set of points below for #16-19.

$$\{(7,-4)\ (0,6)\ (-2,3)\}$$

18. Rotate 90° counter – clockwise	
19. Dilate by a scale factor r = ½	
_	

- Answer each of the following.
- 20. If translation $(5, -3) \rightarrow (-4, 0)$, then $(8, 2) \rightarrow (____)$
- 21. If $T:(x,y) \rightarrow (x-5, y+2)$ and the point F'(7,-6), then find the point F.
- 22. M is reflected over the y axis. If M is (6, -1), find M'.
- 23. C is rotated about the origin 90°. If C' is (-9,5), find C.
- 24. Y is rotated counterclockwise 180°. If the image of Y' is (0, -3) find Y.
- 25. A figure is reflected over the line y = x. If the preimage is (2, 7), find the image.
- 26. $\triangle ABC$ has vertices A(5, -2), B(-4, 0), C(7, 1).

Find the coordinates of the image of the triangle if it is dilated by a scale factor r = 3.

27. Dilate $\triangle ABC$ using a scale factor $r = \frac{1}{4}$.

Explain why the two triangles are similar.

$$AB = 6$$
 $BC = 5$ $CD = 3$ $AD = 4$

30. For each problem, there is a composition of motions. Using your algebraic rules, come up with a new rule after both transformations have taken place.

c. Rotate a triangle 90 degrees counterclockwise, and then reflect in the line y = x.

d. Reflect in the line y = -x, and then translate right 4 units and down 2 units.

31. An equilateral triangle with sides of length $12\ cm$ is reflected consecutively across two lines that are parallel and $12\ cm$ apart. Describe the result using another type of transformation.

32. The diagonals of $Regular\ Hexagon\ ABCDEF$ form six equilateral triangles as shown.

b. Rotate 60° counter – clockwise:
$$D \rightarrow$$

c. Rotate 120° clockwise:
$$F \rightarrow$$

d. Rotate 60° clockwise:
$$\longrightarrow B$$

e. If a translation maps
$$A$$
 to B , then it also maps O to _____ and E to _____

f. A reflection occurs over
$$\overrightarrow{FC}$$
, B maps to _____ and F maps to _____.

33.
$$\frac{2}{x} = \frac{4}{x+3}$$

34. $2x + 6 = 4(x+8)$

35. $2x + 3y = 6$
 $y = \frac{-1}{3}x + 3$

36. $2x + 3y = 7$
 $3x - 3y = -12$

37. $3x + 5y = 6$
 $2x - 4y = -7$

38. $6x - 8y = 50$
 $4x + 6y = 22$

SET

Topic: Reflecting and rotating points.

On each of the coordinate grids there is a labeled point and line. Use the line as a line of reflection to reflect the given point and create its reflected image over the line of reflection. (Hint: points reflect along paths perpendicular to the line of reflection. Use perpendicular slope!)

3.

4.

Reflect point \boldsymbol{A} over line \boldsymbol{m} and label the image $\boldsymbol{A'}$

Reflect point B over line k and label the image B'

5.

6.

Reflect point C over line I and label the image C'

Reflect point D over line m and label the image D

For each pair of point, P and P' draw in the line of reflection that would need to be used to reflect P onto P'. Then find the equation of the line of reflection.

7.

8.

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvision project.org

