QUIZ DATES: &	Name
Segment Bisector: A line (or part of a line) that intersects the segment at its $midpoint$.	Congruent Angles: Angles whose measures are equal.
Angle Bisector: A ray that divides an angle into 2 congruent angles.	Right Angle: Angle whose measure is 90° THEOREM: All right angles are congruent.
Perpendicular Lines: Lines (or parts of lines) that intersect to form a right angle.	Perpendicular Bisector: Line (or part of a line) that is perpendicular to a segment at its midpoint.
Vertical angles: Two nonadjacent angles formed by 2 intersecting lines.	Complementary angles: Two angles whose measures have a sum is 90°
THEOREM: Vertical Angles are congruent. Supplementary angles: Two angles whose measures have a sum is 180°	Linear pair: Two adjacent angles whose non-common sides are opposite rays.
Reflexive Property of Congruence: A geometric figure is congruent to itself.	POSTULATE: Linear Pairs are supplementary. Transitive Property of Congruence: If one geometric figure is congruent to a second geometric figure and the second geometric figure is congruent to a third geometric figure, then the first and third figures are congruent.

Dos

I say (or see)	You say	By
≅ Segments		
Midpoint		
Segment Bisector	2	
\cong Angles ($\angle's$)		
Angle Bisector		
Perpendicular (丄) Lines		
Right Angle		
2 Right Angles		
Perpendicular Bisector		
Vertical Angles		
Complementary Angles		
Supplementary Angles		
Linear Pair		
Shared Angle		
Shared Side		
$\angle A \cong \angle B$ and $\angle B \cong \angle C$		
ΔABC has a right angle		

TWO COLUMN PROOFS:

Given: $\overline{ED} \perp \overline{AC}$

∠B is a right angle

Prove: $\triangle ADE \sim \triangle ABC$

Reasons

Write a two column similarity proof for each:

1. Given: $\overline{EF} \parallel \overline{RS}$

Prove: $\frac{FX}{SX} = \frac{EF}{RS}$

Reasons
-

2. Given: $\angle 1 \cong \angle 2$ Prove: $\frac{JG}{JY} = \frac{GI}{YZ}$

Statements	Reasons
Statement	
1	

3. Given:

 $\angle B \cong \angle C$

Prove:

 $\Delta BNM \sim \Delta CLM$

Statements	Reasons

4. Given:

 $\overline{BN} \parallel \overline{LC}$

Prove:

 $\frac{BM}{CM} = \frac{NM}{LM}$

Statements	Reasons

5. Given:

 $\angle D$ and $\angle AHE$ are right angles

Prove:

 $\angle G \cong \angle AEH$

	Reasons
Statements	Vegania