5.3 It's All In Your Head

A Solidify Understanding Task

In the previous task you were asked to justify some claims by writing paragraphs explaining how various figures were constructed and how those constructions convinced you that the claims were true. Perhaps you found it difficult to say everything you felt you just knew. Sometimes we all find it difficult to explain our ideas and to get those ideas out of our heads and written down or paper.

Organizing ideas and breaking complex relationships down into smaller chunks can make the task of proving a claim more manageable. One way to do this is to use a flow diagram.

First, some definitions:

- In a triangle, an altitude is a line segment drawn from a vertex perpendicular to the opposite side (or an extension of the opposite
 side).
- In a triangle, a median is a line segment drawn from a vertex to the midpoint of the opposite side.

- In a triangle, an angle bisector is a line segment or ray drawn from a vertex that cuts the angle in half.

- In a triangle, a perpendicular bisector of a side is a line drawn perpendicular to a side of the triangle through its midpoint.

Travis used a compass and straightedge to construct an equilateral triangle. He then folded his diagram across the two points of intersection of the circles to construct a line of reflection. Travis, Tehani, Carlos and Clarita are trying to decide what to name the line segment from C to D.

Travis thinks the line segment they have constructed is also a median of the equilateral triangle. Tehani thinks it is an angle bisector. Clarity thinks it is an altitude and Carlos thinks it is a perpendicular bisector of the opposite side. The four friends are trying to convince each other that they are right.

On the following page you will find a flow diagram of statements that can be written to describe relationships in the diagram, or conclusions that can be made by connecting multiple ideas. You will use the flow diagram to identify the statements each of the students-Travis, Tehani, Carlos and Clarita-might use to make their case. To get ready to use the flow diagram, answer the following questions about what each student needs to know about the line of reflection to support their claim.

1. To support his claim that the line of reflection is a median of the equilateral triangle, Travis will need to show that:

2. To support her claim that the line of reflection is an angle bisector of the equilateral triangle, Tehani will need to show that:

$$
\angle A C D=\angle B C D
$$

3. To support her claim that the line of reflection is an altitude of the equilateral triangle,

4. To support his claim that the line of reflection is a perpendicular bisector of a side of the equilateral triangle, Carlos will need to show that:

mathematics vision project

Here is a flow diagram of statements that can be written to describe relationships in the diagram, or conclusions that can be made by connecting multiple ideas.
7. Use four different colors to identify the statements each of the students-Travis, Tehani, Clarita and Carlos might use
 to make their case.

8. Match each of the arrows and braces in the flow diagram with one of the following reasons that justifies why you can make the connection between the statement (or statements) previously accepted as true and the conclusion that follows:

1. Definition of reflection
2. Definition of translation
3. Definition of rotation
4. Definition of an equilateral triangle
5. Definition of perpendicular
6. Definition of midpoint
7. Definition of altitude
8. Definition of median
9. Definition of angle bisector
10. Definition of perpendicular bisector
11. Equilateral triangles can be folded onto themselves about a line of reflection
12. Equilateral triangles can be rotated 60° onto themselves
13. SSS triangle congruence criteria
14. SAS triangle congruence criteria
15. ASA triangle congruence criteria
16. Corresponding parts of congruent triangles are congruent
17. Reflexive Property

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org

Travis and his friends have seen their teacher write two-column proofs in which the reasons justifying a statement are written next to the statement being made. Travis decides to turn his argument into a two-column proof, as follows.

Statements	Reasons
$\triangle A B C$ is equilateral	Given
$\overleftrightarrow{C E}$ is a line of reflection	Equilateral triangles can be folded onto themselves about a line of reflection
D is the midpoint of $\overline{A B}$	Definition of reflection
$\overline{C D}$ is a median	Definition of median

9. Write each of Clarita's, Tehani's, and Carlos' arguments in two-column proof format.

READY

Topic: Congruence statements and corresponding parts
Remember that when you write a congruence statement such as $\triangle A B C \cong \triangle F G H$, the corresponding parts of the two triangles must be the parts that are congruent.
For instance, $\angle A \cong \angle F, \overline{A B} \cong \overline{F G}, \angle B \cong \angle G, \overline{B C} \cong \overline{G H}$. Also, recall that the congruence patterns for triangles, $A S A$. SAS, and SSS, are what we can use to justify triangle congruence.

The segments and angles in each problem below are corresponding parts of 2 congruent triangles. Make a sketch of the two triangles. Then write a congruence statement for each pair of triangles represented. State the congruence pattern that justifies your statement.

Congruence statement

a.
2. $\overline{W B} \cong \overline{Q R}, \overline{B P} \cong \overline{R S}, \overline{W P} \cong \overline{Q S}$
3. $\overline{C Y} \cong \overline{R P}, \overline{E Y} \cong \overline{B P}, \angle Y \cong \angle P$
a.
a.
a.
a.
b.
6. $\overline{W X} \cong \overline{A B}, \overline{X Z} \cong \overline{B C}, \overline{W Z} \cong \overline{A C}$
b.
b.
b.
5. $\overline{D F} \cong \overline{X Z}, \overline{F Y} \cong \overline{Z W}, \angle F \cong \angle Z$
b.
.
b. $S A S$
mathematicsvisionproject.org

SET

Topic: Special triangle segments and proof.
Recall the following definitions:

In a triangle:

- an altitude is a line segment drawn from a vertex perpendicular to the opposite side (or an extension of the opposite side).

- a median is a line segment drawn from a vertex to the midpoint of the opposite side.

- an angle bisector is a line segment or ray drawn from a vertex that cuts the angle in half.

- a perpendicular bisector of a side is a line drawn perpendicular to a side of the triangle through its midpoint.

Be sure to use the correct notation for a segment in the following problems.

7. Name a segment in $\boldsymbol{\Delta} \boldsymbol{G} \boldsymbol{H} \boldsymbol{M}$ that is an altitude.
8. Name a segment in $\boldsymbol{\Delta G H} \boldsymbol{M}$ that is an angle bisector.
9. Name a segment in $\boldsymbol{\Delta G H} \boldsymbol{M}$ that is NOT an altitude.

10. Create a perpendicular bisector by marking two segments congruent in $\triangle \boldsymbol{G H} \boldsymbol{M}$. Name the segment that is now the perpendicular bisector

Use $\triangle D E F$ improblems 11-13.

11. Construct the altitude from vertex D to $E F$.
12. Construct the median from D to $E F$.
13. Construct the perpendicular bisector of $\overline{E F}$.

Need help? Visit www.rsgsupport.org

Tehani has been studying the figure below. She knows that quadrilateral $A D E G$ is a rectangle and that $\overline{E D}$ bisects $\overline{B C}$. She is wondering if with that information she can prove $\triangle B G E \cong \triangle E D C$. She starts to organize her thinking by writing what she knows and the reasons she knows it.

I know $\overline{E D}$ bisects $\overline{B C}$ because I was given that information
I know that $\overline{B E} \cong \overline{E C}$ by definition of bisect.
I know that $\overline{G E}$ must be parallel to $\overline{A D}$ because the opposite sides in a rectangle are parallel.
I know that $\overline{G A} \| \overline{E D}$ because they are opposite sides in a rectangle.
I know that $\overline{A D}$ is contained in $\overline{A C}$ so $\overline{A C}$ is also parallel to $\overline{G E}$.

I know that $\overline{G A}$ is contained in $\overline{B A}$ so $\overline{G A}$ is also parallel to $\overline{B A}$
I know that $\overleftrightarrow{B C}$ has the same slope everywhere because it is a line.
I know the angle that $\overline{B E}$ makes with $\overline{G E}$ must be the same as the angle that $\overline{E C}$ makes with $\overline{A C}$ since those 2 segments are parallel. So $\angle B E G \cong \angle E C D$. I think I can use that same argument for $\angle G B E \cong \angle D E C$.
I know that I now have an angle, a side, and an angle congruent to a corresponding angle, side, and angle. So $\triangle B G E \cong \triangle E D C$ by ASA.
14. Use Tehani's "I know" statements and her reasons to write a two-column proof that proves $\triangle B G E \cong \triangle E D C$. Begin your proof with the "givens" and what you are trying to prove.

Given: quadrilateral ADEG is a rectangle, $\overline{E D}$ bisects $\overline{A C}$
Prove: $\triangle B G E \cong \triangle E D C$

STATEMENTS	
1. quadrilateral ADEG is a rectangle	given
2. $\overline{E D}$ bisects $\overline{A C}$	given

Need help? Visit www.rsgsupport.org

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org

