6.10 Algebra and Functions

A Practice Understanding Task

Consider the equation $x-1=\sqrt{2(x+3)}$.
This equation is made up of a linear function, $f(x)=x-1$, and a square root function, $g(x)=\sqrt{2(x+3)}$.

Image Source: https://en-wikipedia.orglwiki/Geometry

1. Find the domain and range of each function and then graph both functions on the same coordinate plane.

$f(x)=x-1$	$g(x)=\sqrt{2(x+3)}$
Domain: $(-\infty, \infty)$	Domain: $[-3, \infty)$
Range: $(-\infty, \infty)$	Range: $[0, \infty)$

2. Algebraically solve the equation $(x-1)=(\sqrt{2(x+3)})^{2}$

3. Are the solutions elements of the domain in both the linear and square root functions?

4. Substitute the solutions back into the functionsto see if the q tuts are elements in the range of each function.
range of each function.
$f(5)=4(x)=x-1$
$f(-1)=2(5)=2$
5. Are all of the outputs elements in the range of both functions? Explain why or why not.

6. If the square root function was reflected over the x-axis, so that it's equation was $h(x)=-\sqrt{2 x+6}$, what would be the solution to the equation $x-1=$

$$
\begin{array}{ll}
(-x+1)=2(\sqrt{2}(x+3)) & -1 \\
x^{2}-2 x+2 x+6 & x^{2}-4 x-5-0 \\
-2 x-c-2 x-6 & (x-5)(x+1)
\end{array}
$$

Solve the following equations algebraically. Be sure to check for extraneous solutions.

$$
\text { 7) } \begin{aligned}
& \frac{2}{x}=\frac{3 x+5}{1} \\
& 2=3 x^{2}+5 x \\
& 0=3 x^{2}+5 x-2 \\
& \frac{-5 \pm \sqrt{25-4(3)(-2)}}{6} \\
& \frac{-5 \pm \sqrt{49}}{6} \\
& \frac{-5 \pm 7}{6}<2
\end{aligned}
$$

8) $\frac{2 x+3}{1}=\frac{5}{x}$

$$
\begin{aligned}
& 5=2 x^{2}+3 x \\
& 0=2 x^{2}+3 x-5 \\
& 0=x^{2}+3 x-10 \\
& 0=\left(x+\frac{5}{2}\right)\left(x-\frac{2}{2}\right)
\end{aligned}
$$

$$
0=(2 x+5)(x-1)
$$

$$
x=\frac{-5}{2} \quad x=1
$$

$$
\begin{aligned}
& \text { 9) } \begin{array}{l}
\frac{6}{x}=\frac{9-3 x}{1} \\
6=9 x-3 x^{2} \\
3 x^{2}-9 x+6=0 \\
3\left(x^{2}-3 x+2\right)=0 \\
3(x-2)(x-1)=0 \\
x=2 x=1
\end{array} \$=0
\end{aligned}
$$

Developed by CHCCS and WCPSS
10) $4 x-7=\frac{2}{x}$
11) $\frac{3}{5} x+5=\sqrt{2 x-1}+5$
12) $4 x-2=\sqrt{x+3}$

$$
\begin{aligned}
& \left(\frac{3}{5} x\right)^{2}=(\sqrt{2 x-1})^{2} \\
& \frac{9}{25} x^{2}=2 x-1
\end{aligned}
$$

$$
=\frac{9}{25} x^{2}-2 x+1=0
$$

$$
\begin{array}{ll}
\frac{5}{5} \\
\left.+2 \pm \sqrt{4-4\left(\frac{9}{25}\right)(1)}\right) & \begin{array}{l}
(x-1)(16 x-1)=0 \\
x=1
\end{array} \quad x=016
\end{array}
$$

13) $\sqrt{4 x}=-2 x+4$
14)

$$
\begin{aligned}
& 0.5 x-8=2-2 \sqrt{x+1} \\
&-2-2 \\
& \frac{.5 x-10}{-2}=\frac{-2 \sqrt{x+1}}{-2}
\end{aligned}
$$

$$
\left(-\frac{1}{4} x+5\right)^{2}=(\sqrt{x+1})^{2}
$$

$$
+\frac{1}{16} x^{2}-2.5 x+25=x+1
$$

$$
\frac{1}{16} x^{2}-3.5 x+24=0
$$

Developed by CHCCS and WCPSS

