6.2 Time's Running Out!

A Develop Understanding Task

Last lesson we were introduced to Family Kingdom

Amusement Park in Myrtle Beach and how they
needed to be prepared for the chance of a Tsunami. We learned how we could determine how fast a wave was moving, but how can we use this to help them prepare?

You may remember from science that $r=\frac{d}{t}$ where d is distance, t is time, and r is rate. The earthquake that we detected was at $22^{\circ} 27^{\prime} 06^{\prime \prime} \mathrm{N}$ and $54^{\circ} 02^{\prime} 47^{\prime \prime} \mathrm{W}$ which is $27,393.82 \mathrm{~km}$ from Family Kingdom Amusement Park. This means we can model the rime vs. rate with the equation $r=\frac{27393.82}{t}$.

oral

1. Let's take a look at this function! Create a table and graph of this function

2. Let's take a look at this function! Create a table and graph of this function.

table

2. Describe the domain of the function. Explain.

nodose horizontally

3. What is the range of the function? Explain.

vertically
new n
touch
4. Describe the rate of change of the function. How does the rate of change of this function compare to the rate of change of other functions that we have encountered?

aSP de creases y increases at a dereasi
5. In the model, the distance $27,39,32$ is measured in km. What are ogecical units of r and r?
Explain your thinking.

$$
1 / 1+5
$$

$$
\square=\overbrace{}^{\prime} \cap \cap
$$

Developed by CHCCS and WCPSS
Page 8
6. In the Watch Out for That Wave! task, we determined that the wave was traveling toward Family Kingdom Amusement Park at $224.66 \mathrm{~m} / \mathrm{s}$. Determine how long it will take the wave to reach the Family Kingdom Amusement Park. (Note that the units for the wave speed involve meters, not kilometers.) Explain your thinking. $D=27,393.82 \mathrm{~km}$

$$
\begin{array}{r}
+H^{\prime} D D C M \\
\times 1,000 \frac{224.66 \mathrm{~m}}{1,000}
\end{array}
$$

$$
\frac{1 m}{.001 k m}=\frac{224.66 m}{x}
$$

$r=22466$
find the t

$$
.22466 \mathrm{~km} / \mathrm{sec}
$$

Which representation of the function did you use to find the time it takes for the wave to reach the Amusement Park? Explain how you used this representation find your answer.
The equation
units kM/SCC
to find his
7. Why is this important information for the park? How could they use this to help them prepare?

out how lory

tsunami

Topic: Predict whether a relationship is direct or inverse variation.
For each of the following scenarios, as the first quantity increases, predict whether the second quantity increases or decreases.

1. number of people at the beach; ice cream sales

2. speed of a car; time it takes to travel 100 miles
3. number of hours Thomas works each week; the amount of money he makes \int if $1+$
4. number of people working on a project; time it takes to complete the project inv e
5. number of lottery jackpot winners; amount of money per winner

SET

Topic: Inverse variation functions in context.

Boyle's Law states that as the pressure exerted on a gas increases, the volume of a gas decreases. A pump used to put air in a bicycle tire is a great example of Boyle's Law in action. When you push down on the pump, the volume inside the bike pump decreases, and the pressure of the air increases so that it's pushed into the tire.

If the volume inside of a bicycle pump is 8.2 cubic inches, and the pressure is 19.1 psi (pounds per square inch), the equation that represents this situation is:

$$
V=\frac{156.62}{P}
$$

6. What units are involved in this problem? Define the quantities and variables you would use to model this situation. Label them on the graph.
7. What type of function does this relationship represent? How can you tell?
8. If a pressure of 4 psi is exerted on the gas in the pump, what would be the volume of the gas?

$$
V=\frac{156.62}{40} \begin{array}{ll}
V=\text { volume in in } \\
& =\text { pressure in psi }
\end{array}
$$

Topic: Properties of exponents.

Simplify the following expressions.
9. $n^{6} \cdot n^{3}$
10. $\left(x^{5}\right)^{2}$
11. $\left(3 a^{2} b^{\frac{1}{3}}\right)^{3}$
12. $\frac{x^{8}}{x^{6}}$
13. $\frac{x^{5}}{x^{7}}$
14. $\frac{x^{4}}{x^{4}}$
15. $\left(x^{3} y^{6}\right)^{-4}$
16. $8^{\frac{2}{3}}$
17. $x^{-\frac{1}{3}}$

