READY, SET, GO!

Name
Period

READY

Topic: Solving Proportions.

Find the value of x in each equation.

1. $\frac{2}{x} \xlongequal[8]{20}$
$\begin{aligned} \frac{40}{8} & =\frac{8 x}{8} \\ x & =5\end{aligned}$

$$
\text { 4. } \begin{gathered}
\frac{(x+1)}{20}=\frac{1}{2} \\
2 x+2=20 \\
-2 \\
\frac{2 x}{2}=\frac{18}{2} \\
x=9
\end{gathered}
$$

2. $\frac{24}{1} \times \frac{36}{x}$
$\frac{24 x}{24}=\frac{36}{24}$
$x=1.500$
3. $\frac{9}{16} \frac{6}{x}$
$9 x=96$
$x=32 / 3$
4. $\frac{35}{(2 x-3)}\left\ulcorner>\frac{70}{34}\right.$
5. $\frac{10}{x}=\frac{8}{1}$
$1190=140 x-210$
$+210+210$

$$
\frac{10}{8}=\frac{8 x}{8}
$$

$$
\frac{1400}{140}=\frac{140 x}{140}
$$

$$
x=10
$$

Date
9. From the parent graph $f(x)=\frac{1}{x}$ the graph has been shifted six units to the right and five units down.

$$
f(x)=\frac{1}{x-6}-5
$$

10. From the parent graph $f(x)=x^{2}$ the key points of $(0,0),(1,1)$, and $(2,4)$ are now $(0,0),(1$, $0.5)$, and (2, 2).

$$
f(x)=1 / 2 x^{2}
$$

11. From the parent graph $f(x)=\sqrt{x}$ to $g(x)$ given in the table below.

x	$\mathrm{f}(\mathrm{x})$	$\begin{aligned} & x 4 \\ & x 4 \\ & x 4 \end{aligned}$	x	$\mathrm{g}(\mathrm{x})$
0	0		0	0
1	1		1	4
4	2		4	8
9	3		9	12

Given the following parent graphs, write the new function of the transformed graph that will go through the given ordered pairs.
12.

13.

Given the following parent graphs $f(x)$, write the new function of the transformed graph that is shown.

$$
f^{\prime}(x)=\sqrt{x+4}-3
$$

14.

15.

16.

18.

$$
f^{\prime}(x)=-2 \sqrt{x}-2
$$

17.

GO!

Topic: Different forms of a quadratic function.

19. Given the quadratic function: $y=(x-4)(x+5)$, re-write the function in standard form.

$$
x^{2}+5 x-4 x-20
$$

20. Given the quadratic function: $y=x^{2}-2 x-48$ rewrite the function in factored form.

$$
y=(x-8)(x+6)
$$

21. Given the quadratic function: $y=x^{2}+16 x+71$ re-write the function in vertex form.

$$
\begin{array}{ll}
\begin{array}{l}
x^{2}+16 x+64=-71+64
\end{array} & \begin{array}{l}
\text { L Complete the } \\
(x+8)^{2}=-7
\end{array} \\
y=(x+8)^{2}+7 & \text { square }
\end{array}
$$

22. Given the quadratic function: $y=(x+2)^{2}-4$ re-write the function in standard form.

$$
\begin{aligned}
& (x+2)(x+2)-4 \\
& =x^{2}+4 x
\end{aligned}
$$

23. Given the quadratic function: $y=(x-3)^{2}-4$ re-write the function in factored form.

$$
\begin{aligned}
& y=(x-3)(x-3)-4 y=(x-5)(x-1) \\
& y=x^{2}-6 x+5
\end{aligned}
$$

24. Given the quadratic function: $y=(x-5)(x-3)$ re-write the function in vertex form.

$$
\begin{aligned}
& x^{2}-8 x+15 \\
& x^{2}-8 x+16=-15+16 \\
& (x-4)^{2}=1 \\
& y=(x-4)^{2}-1
\end{aligned}
$$

