Math 2 Unit 4 –Radical & Rational Functions Lesson 4 → Graphs of Rational Functions

Date	Pd

> A rational function is a function that can be written as the ratio of two polynomials where the denominator does not equal zero.

$$f(x) = \frac{p(x)}{q(x)} \text{ where } q(x) \neq 0$$

❖ Steps to graph a rational function:

- 1) Determine the location of the asymptotes based on the transformations:
 - A) Vertical asymptotes are placed based on the horizontal translation: x = h
 - B) Horizontal asymptotes are placed based on the **vertical translation**: y = k
- 2) **Vertical Stretch or Compression**: n tells us how far the branches have been stretched from the asymptotes. We can use it to help us find out corner points to start our branches. $U = \lambda (x 1)$

Distance from asymptotes = \sqrt{n}

- 3) Look at the table on the calculator for other points and then sketch the two branches.
- Graph each of the following examples:

2. $y = \sqrt{\frac{1}{x-2}} + 1$

3. $y = -\frac{4}{x+1}$

Equation of VA: $\chi=0$ Equation of HA: $\chi=0$

Describe translations:

Domain: (-∞,0) ((0,∞)

Range: $(-\infty,0)$ \vee $(0,\infty)$

Equation of VA: $\chi = \lambda$

Equation of HA: $\sqrt{2}$

Describe translations: $ot\! L \, \lambda$, $ot\! U$

 $Pomain: (-\infty, \lambda) \cup (\lambda)$

Range: $(-\infty)$

Equation of VA: $\chi_2 - 1$

Equation of HA: $\sqrt{-0}$

Describe translations: \(\hat{\chi} \tag{\chi}

Domain: $(-\infty, -1)$ $\cup (-1, \infty)$

Range

5.

Equation of VA:
$$\chi = 0$$

Equation of HA: $\chi = 0$

Equation of HA: $\sqrt{=-3}$

Domain: $(-\infty,0)$

Describe translations:

Describe translations: (2)

Range: $(-\infty, -4)$ $\sqrt{-4}$

Domain:
$$(-\infty,0)$$

Domain:
$$(12.20)$$

Range: $\left(-\infty\right)\left(\right)\left(0\right)$ Range: $(-\infty, -5)U(-3, \infty)$

7. Describe each graph as compared to the parent graph $y = \frac{1}{r}$.

 $y = \frac{-2}{x-7} + 5$

function The graph of this _____

has been translated _____ seven units and

translated _____ units _____. It has been

vertically stretched by a factor of _____ and

____across the x-axis. The graph is

increasing from ______ to ____. The

function has a domain of _____ and a

range of ______

The graph of this _____ function

has been translated _____ two units and

translated _____units _____. It has been

vertically stretched by a factor of _____. The

_____from left to right. The

function has a domain of _____ and a

range of ______.

Write the equation of a rational function $y = \frac{1}{x}$ with following transformations: 8.

A. Right 4 and Down 5
$$\sqrt{}$$
 $\sqrt{}$ $\sqrt{$

Left 3 and Up 2 and Reflected across x - axis.

$$\sqrt{=-\frac{1}{x+3}}+2$$

Left 6 and Vertically Stretched by a factor of 4.

D. Right 5 and graph will be in II & IV quadrants

