Math 2 Unit 6 –Triangles & Congruence Lesson 3 → Triangle Congruence Proofs Fill in the missing statements and reasons. 1. Given: $\overline{AB} \parallel \overline{DC}$, $\angle B \cong \angle D$ Prove: $\overline{BC} \cong \overline{DA}$ Name_____ Date_____ ## Statements - 1,_____ - 2. $\angle 1 \cong \angle 2$ - 3. $\overline{AC} \cong \overline{AC}$ - 4. $\triangle ABC \cong \triangle CDA$ - 5. _____ ### Reasons - 1. Given - 2. - 3. - 4. _____Congruence - 5. CPCTC ## 2. Given: $\overline{QK} \cong \overline{QA}$, \overline{QB} bisects $\angle KQA$ Prove: $\overline{KB} \cong \overline{AB}$ #### Statements - 1,_____ - 2._____ - 3,_____ - 4. Δ*KBQ* ≅ Δ _____ - 5. _____ #### Reasons - 1. Given - 2. Definition of Angle Bisector - 3. Reflexive Property of Congruence - 4. _____Congruence - 5._____ # 3. Given: $\overline{BD} \perp \overline{AB}$, $\overline{BD} \perp \overline{DE}$, $\overline{AB} \cong \overline{DE}$ Prove: $\angle A \cong \angle E$ #### Reasons 1.____ Statements - 2. ∠B & ∠D are right angles - 3, - 4. ∠1 ≅ ∠2 - 5. Δ*ABC* ≅ Δ _____ - 6. _____ - 1. - 2. Definition of _____ - 3. All _____ angles are congruent - 4._____ - 5. _____Congruence - 6._____ | 4. | Given: | $\overline{FJ}\cong \overline{GH}$, | ∠JFH ≅ | ∠GHF | |----|--------|--------------------------------------|--------|------| | | | , | | | Prove: $\overline{FG} \cong \overline{JH}$ | Statements | | | |------------|--|--| | | | | | 4 | | | 1,_____ 2. $\overline{FH} \cong \overline{HF}$ 3. ∆_____≅ ∆____ 4. _____ ## Reason 1.____ 2. 3. _____ Congruence 1. ## **6. Given:** $\overline{CN} \perp \overline{AB}$, \overline{CN} bisects $\angle ACB$ Prove: $\overline{AC} \cong \overline{CB}$ | Statements | | |------------|--| | | | - 1. - 2. $\angle 3 \& \angle 4$ are right angles - 3. _____ - 4._____ - 5. - 6. Δ*ANC* ≅Δ - 7. $\overline{AC} \cong \overline{CB}$ #### Reasons - 1. _____ - 2. Definition of _____ - 3. All right angles are _____ - 4. Definition of _____ - 5. _____ - 6. _____Congruence - 7. _____ > Complete the following proofs. Draw and mark each picture before writing the proof. 1. Given: $\overline{BD} \perp \overline{AC}$ | | _ | | |--------------------------|---------|-----------------| | $\overline{\mathrm{AD}}$ | \cong | \overline{DC} | Prove: $\angle 1 \cong \angle 2$ | Statement | Reason | |-----------|--------| | 1, | | | 2. | | | 3. | | | 4. | | | 5. | | | 6. | | 2. Given: G is the midpoint of \overline{FH} $$\overline{EF}\cong \overline{LH}$$ $\angle F\cong \angle H$ Prove: $\overline{EG} \cong \overline{LG}$ | Statement | Reason | |-----------|--------| | 1. | | | 2. | | | 3. | | | 4. | | 3. Given: \overline{CD} bisects $\angle ACB$ $$\angle A\cong \angle B$$ Prove: $\overline{AD} \cong \overline{DB}$ | Statement | Reason | |-----------|--------| | 1. | | | 2. | | | 3. | | | 4. | | | 5. | | 4. Given: $\overline{PR} \cong \overline{QS}$ $\angle P \cong \angle S$ $\angle T\cong \angle V$ Prove: $\overline{TR} \cong \overline{QV}$ | Statement | Reason | |-----------|--------| | 1. | | | 2. | | 5. Given: \overline{BD} bisects $\angle ABC$ $\overline{BA}\cong \overline{CB}$ Prove: $\angle ADB \cong \angle CDB$ | Statement | Reason | |-----------|--------| | 1, | | | 2. | | | 3. | | | 4. | | | 5. | | 6. Given: G is the midpoint of \overline{FI} $\angle F \cong \angle I$ Prove: $\overline{EF} \cong \overline{IH}$ | Statement | Reason | |-----------|--------| | 1. | | | 2. | | | 3. | | | 4. | | | 5. | | # Unit 6 –Triangles & Congruence Lesson 4 → More Triangle Congruence Proofs | Name | | |------|----| | Date | Pd | 1. Given: $\angle 3 \cong \angle 4$ $\frac{\angle K}{KV} \cong \frac{\angle Z}{ZV}$ Prove: $\overline{KO} \cong \overline{ZL}$ | Statement | Reason | | |-----------|--------|--| | 1. | | | | | ķ | | | 2. | | | | 3. | | | 2. Given: $\overline{PB} \cong \overline{PC}$ $\overline{AB}\cong \overline{CD}$ $\overline{AP}\cong \overline{PD}$ Prove: $\angle 3 \cong \angle 4$ | Statement | Reason | | | |-----------|--------|--|--| | 1. | | | | | 2., | | | | | 3. | | | | 3. Given: $\angle P \cong \angle R$ $\overline{EP}\cong \overline{AR}$ I is the midpoint of \overline{PR} Prove: $\overline{EI} \cong \overline{AI}$ | Statement | Reason | | | |-----------|--------|--|--| | 1, | | | | | 2. | | | | | 3. | | | | | 4, | | | | 4. Given: $\overline{AB} \cong \overline{CD}$ $\overline{AB} \perp \overline{BC}$ $\overline{CD}\perp \overline{BC}$ $\overline{BE}\cong \overline{CF}$ Prove: $\angle A \cong \angle D$ | A | В | | |---|---|-----| | | E | | | | F | | | | c | • D | | Statement | Reason | |-----------|--------| | 1. | | | 2. | | | 3. | | | 4 | | **5. Given:** $\angle F$ and $\angle H$ are right angles $\boxed{1}$. G is the midpoint of \overline{FH} 5 $\overline{EF}\cong \overline{LH}$ Prove: $\angle E \cong \angle L$ 1. 2. 3. 4. 5. Statement **6. Given:** ∠ $B \cong \angle C$ $\frac{\overline{BF}}{\overline{BD}} \cong \overline{\overline{BC}}$ Prove: $\angle 1 \cong \angle 2$ | Statement | Reason | | | |-----------|--------|--|--| | 1. | | | | | 2. | | | | | 3. | | | | Reason ## **Lesson 4** → More Triangle Congruence Proofs HOMEWWORK 1. Given: $\overline{AB}\cong \overline{CD}$ $\overline{AB} \parallel \overline{CD}$ $\overline{AE} \cong \overline{CF}$ | Prove: | \overline{BE} | \cong | \overline{DF} | |--------|-----------------|---------|-----------------| | Statement | Reason | |-----------|--------| | 1. | | | | | | 2. | | | 3. | | | 4. | | 2. Given: $\angle DAL \cong \angle BCM$ $\overline{DL} \cong \overline{MB}$ $\angle ALD \ and \ \angle CMB \ are$ $right \ angles$ Prove: $\overline{AL} \cong \overline{CM}$ | Statement | Reason | |-----------|--------| | 1, | | | 2. | | | 3. | | | 4. | | 3. Given: \overline{FI} bisects \overline{EH} $\angle E \cong \angle H$ Prove: $\overline{EF}\cong \overline{HI}$ | Statement | Reason | | | |-----------|--------|--|--| | 1. | | | | | 2. | | | | | 3, | | | | | 4. | | | | | 5. | | | | 1: ΔHEY is congruent to ΔMAN by _____. What **other** parts of the triangles are congruent **by CPCTC**? ____≅___ ___≅___ 2: ΔCAT ≅ _____, by ____ > Solve each of the following sets of Congruent Triangles for the variables indicated. | 3. | $\triangle ABC$ | \cong | ΔDEF | | |----|-----------------|---------|--------------|--| | | | | | | $$\angle A = (4x)^{\circ} \quad \angle E = (2x+1)^{\circ}$$ $\angle C = 75^{\circ}$ $$x =$$ 4. $\triangle ABC \cong \triangle DEF$ $$\angle A = 60^{\circ}$$ $\overline{AB} = 6x - 4$ $\angle D = (5y)^{\circ}$ $\overline{DE} = 3x + 26$ 5. $$\triangle ABC \cong \triangle DEF$$ $$\overline{AC} = 4x - 5$$ $\overline{EF} = 5y$ $\overline{BC} = y + 1$ $\overline{DF} = 2x + 7$ ## Math 2 # Unit 6 - Triangles and Congruence **Test Review** Name_____Pd___ - > For each pair of triangles, name the reason for congruence. (SSS, SAS, ASA, AAS, NONE) - > Then name the correct congruent triangle. If the reason was NONE, leave the triangle answer blank. - 1. ΔABC ≅ Δ_____ By:_____ 2. ΔABC ≅ Δ______ By:_____ 3. ΔABC ≅ Δ_____ By:____ 4. ΔADC ≅ Δ______ By:_____ 5. ΔMAD ≅ Δ_____ By:____ 7. ΔACB ≅ Δ_____ Ву:_____ 8. $\triangle MNP \cong \triangle$ _____By:____ N P 1. Given: $\overline{AC} \cong \overline{BC}$, M is the midpoint of \overline{AB} Prove: $\angle A \cong \angle B$ | Statements | Reasons | |--|---------| | $\overline{AC} \cong \overline{BC}$, M is the midpoint of \overline{AB} | GIVEN | | | | | | | | ∠A≅∠B | CPCTC | 2. Given: \overline{WZ} bisects $\angle XWY$, $\angle X \cong \angle Y$ Prove: $\overline{WY} \cong \overline{WX}$ | \longrightarrow | > 7 | |-------------------|-----| | | | | Statements | Reasons | |--|---------| | \overline{WZ} bisects $\angle XWY$, $\angle X \cong \angle Y$ | GIVEN | | | | | | | | $\overline{WY}\cong \overline{WX}$ | СРСТС | 3. Given: \overline{DB} is perpendicular to \overline{AC} , $\angle 3 \cong \angle 4$ Prove: $\overline{AD} \cong \overline{CD}$ | Statements | Reasons | |---|---------| | \overline{DB} is perpendicular to \overline{AC} , $\angle 3 \cong \angle 4$ | GIVEN | | | | | | | | | | | | | | $\overline{AD}\cong\overline{CD}$ | CPCTC |