Math 2 - Honors
Name \qquad
Unit 1-Geometric Transformations

Unit Review

- For each transformation, state the coordinates for each:

	Image of (x, y)	Image of (1,4)	Image of $(-2,7)$
1. Reflect over y - axis			
2. Reflect over x - axis			
3. Reflect over $y=x$			
4. Reflect over $y=-x$			
5. Rotate 90° clockwise about the origin			
6. Rotate 90° counterclockwise about the origin			
7. Rotate 180° about the origin			
8. Rotate 270° about the origin			

- For each of the following, graph and label the image for each transformation described.
- Then write using the correct notation.

8. Reflect over the line $y=-1$
9. Rotate 180° about the origin
10. Translate right 4 units \& down 3 units

- State whether the specified pentagon is mapped to the other pentagon by a reflection, translation, or rotation

11. Pentagon 1 to Pentagon 3
\qquad
12. Pentagon 5 to Pentagon 6
13. Pentagon 2 to Pentagon 5
14. Pentagon 1 to Pentagon 2
15. Pentagon 4 to Pentagon 6
\qquad
\qquad

- Perform each of the transformations using the set of points below for \#16-19.

$$
\{(7,-4) \quad(0,6)(-2,3)\}
$$

16. Reflect over the y-axis	18. Rotate 90° counter - clockwise
17. Reflect over the line $y=-x$	19. Dilate by a scale factor $\mathrm{r}=1 / 2$

- Answer each of the following.

20. If translation $(5,-3) \rightarrow(-4,0)$, then $(8,2) \rightarrow($ \qquad , \qquad
21. If $T:(x, y) \rightarrow(x-5, y+2)$ and the point $\mathrm{F}^{\prime}(7,-6)$, then find the point F . \qquad
22. M is reflected over the y-axis. If M is $(6,-1)$, find M^{\prime}. \qquad
23. C is rotated about the origin 90°. If C^{\prime} is $(-9,5)$, find C. \qquad
24. Y is rotated counterclockwise 180°. If the image of Y^{\prime} is $(0,-3)$ find Y. \qquad
25. A figure is reflected over the line $y=x$. If the preimage is $(2,7)$, find the image. \qquad
26. $\triangle A B C$ has vertices $A(5,-2), B(-4,0), C(7,1)$.

Find the coordinates of the image of the triangle if it is dilated by a scale factor $r=3$.
$A^{\prime}($ \qquad , \qquad)
$B^{\prime}($ \qquad
\qquad)
$C^{\prime}($ \qquad)
27. Dilate $\triangle A B C$ using a scale factor $r=\frac{1}{4}$.

Explain why the two triangles are similar.
28. $A B C D$ is dilated by a scale factor of $r=2$ to produce $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The lengths of the segments of the preimage are as follows:

$$
A B=6 \quad B C=5 \quad C D=3 \quad A D=4
$$

a. What is the length of $\overline{B^{\prime} C^{\prime}}$?
b. What is the length of $\overline{A^{\prime} B^{\prime}}$?

c. If the slope of $\overline{C D}$ is $\frac{1}{3^{\prime}}$, what is the slope of $\overline{C^{\prime} D^{\prime}}$? What allows you to make this conclusion?
29. $P Q R S T \sim U W X Y Z$ with a scale factor of 2:5. If the perimeter of $U W X Y Z$ is 40 inches, what is the perimeter of $P Q R S T$?
30. For each problem, there is a composition of motions. Using your algebraic rules, come up with a new rule after both transformations have taken place.
a. Translate a triangle 5 units left and 3 units $u p$, and then reflect the triangle over the x-axis.
b. Translate a triangle 2 units right and 7 units down, and then rotate 90° clockwise.
c. Rotate a triangle 90 degrees counterclockwise, and then reflect in the line $y=x$.
d. Reflect in the line $y=-x$, and then translate right 4 units and down 2 units.
31. An equilateral triangle with sides of length 12 cm is reflected consecutively across two lines that are parallel and 12 cm apart. Describe the result using another type of transformation.
32. The diagonals of Regular Hexagon $A B C D E F$ form six equilateral triangles as shown.

Fill in the correct letter after the given transformation:
a. Rotate 60° clockwise: $E \rightarrow$ \qquad
b. Rotate 60° counter - clockwise: $D \rightarrow$ \qquad

c. Rotate 120° clockwise: $F \rightarrow$ \qquad
d. Rotate 60° clockwise: \qquad $\rightarrow B$
e. If a translation maps A to B, then it also maps O to \qquad and E to \qquad .
f. A reflection occurs over $\overleftrightarrow{F C}, B$ maps to \qquad and F maps to \qquad .

Solve:

33. $\frac{2}{x}=\frac{4}{x+3}$	34. $2 x+6=4(x+8)$	$\text { 35. } \begin{array}{r} 2 x+3 y=6 \\ y=\frac{-1}{3} x+3 \end{array}$
$\text { 36. } \quad \begin{aligned} & 2 x+3 y=7 \\ & 3 x-3 y=-12 \end{aligned}$	$\text { 37. } \begin{array}{ll} 3 x+5 y=6 \\ & 2 x-4 y=-7 \end{array}$	$\text { 38. } \begin{aligned} & 6 x-8 y=50 \\ & \\ & 4 x+6 y=22 \end{aligned}$

39. Given a line segment with endpoints (1, -2) and (4,5)
A) State the domain and range of the pre - image segment.
D: \qquad
\qquad]_ R: _[___]_
B) State the domain and range of the image interval notation when the relation is:
a) Translated right 1 and up 4:
D: \qquad
R: \qquad
d) Reflected in the line $y=x$:
D: \qquad
R: \qquad
b) Reflected in the \boldsymbol{x}-axis:
e) Rotated 90° :
D: \qquad
D: \qquad
R: \qquad
c) Reflected in the \boldsymbol{y}-axis:
D: \qquad
f) Dilated by a factor of 5 with a center of $(\mathbf{0}, \mathbf{0})$:
D: \qquad
R: \qquad
R: \qquad
